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Abstract
Knowledge graphs (KGs) are powerful tools for
modelling complex, multi-relational data and sup-
porting hypothesis generation, particularly in appli-
cations like drug repurposing. However, for predic-
tive methods to gain acceptance as credible scien-
tific tools, they must ensure not only accuracy but
also the capacity to offer meaningful scientific ex-
planations.
This paper presents a novel approach REx, for gen-
erating scientific explanations based in link predic-
tion in knowledge graphs. It employs reward and
policy mechanisms that consider desirable proper-
ties of scientific explanation to guide a reinforce-
ment learning agent in the identification of explana-
tory paths within a KG. The approach further en-
riches explanatory paths with domain-specific on-
tologies, ensuring that the explanations are both
insightful and grounded in established biomedical
knowledge.
We evaluate our approach in drug repurposing us-
ing three popular knowledge graph benchmarks.
The results clearly demonstrate its ability to gen-
erate explanations that validate predictive insights
against biomedical knowledge and that outperform
the state-of-the-art approaches in predictive perfor-
mance, establishing REx as a relevant contribution
to advance AI-driven scientific discovery.

1 Introduction
Knowledge Graphs (KGs) have emerged as versatile repre-
sentations for capturing complex, multi-relational data in var-
ious scientific domains. They play a critical role in organiz-
ing, exploring, and sharing knowledge while supporting AI-
based scientific discovery by providing structured, conceptu-
ally rich frameworks that can align neural model predictions
with domain knowledge[D’aquin, 2024]. Link prediction has
proven to be a powerful tool for hypothesis generation, en-
abling the discovery of novel relations between entities [Ott et
al., 2022; Akujuobi et al., 2024]. Applications include gene-
disease associations [Yuen and Jansson, 2020] and drug re-
purposing [Napolitano et al., 2018], where new therapeutic
targets are discovered for existing drugs.

To serve effectively as a scientific tool, artificial intelli-
gence must possess the capability to generate scientific ex-
planations [Durán, 2021]. This raises an important ques-
tion: is there a fundamental relationship between the ex-
planation of natural phenomena and the explanation of al-
gorithmic outputs? This topic is subject to ongoing debate
among researchers, particularly regarding how to epistemi-
cally ground the results of computational models as reliable
representations of real-world phenomena. Nonetheless, there
is widespread consensus that computational artefacts can fa-
cilitate the explanation of natural phenomena [Durán, 2017;
Krohs, 2008; Durán, 2021].

However, recent studies highlight that widely used attribu-
tion models [Ribeiro et al., 2016; Lundberg, 2017] are inad-
equate for achieving the level of scientific and human-level
explainability required for meaningful insights [Chou et al.,
2022]. This is also true of state-of-the-art link prediction ex-
plainability approaches [Rossi et al., 2022; Betz et al., 2022],
which are limited to identifying relevant features or triples,
falling short of fulfilling the requirements of scientific expla-
nations. In fact, relevant theories of scientific explanation ar-
gue that purely statistical explanations fail to identify causally
relevant factors or mechanisms [Salmon, 1984].

For these predictive methods to be adopted as reliable sci-
entific tools, they must not only deliver accurate results but
also afford mechanisms for scientific explanations, i.e., meth-
ods that explain the scientific validity of the predictions, en-
suring that they make sense with the current scientific body
of knowledge and are not the result of spurious correla-
tions [Holzinger et al., 2019]. Take as an example the fol-
lowing explanation for a drug recommendation for the patient
John Doe that is grounded on a specific inhibitory mechanism
that mitigates the effects of a deleterious mutation: John Doe
–has mutation→MET T540G –part of→MET Gene –related
to→ Tyrosine Kinase Activity – inhibited by→ Sunitinib.

Moreover, the potential of KGs to support scientific in-
sights extends beyond link prediction. As long as inputs and
outputs of a hypothesis generation system can be represented
within a KG, the scientific knowledge encoded therein can be
explored to create scientific explanations.

This paper focuses on generating knowledge-driven scien-
tific explanations to validate scientific hypotheses generated
by AI methods. More specifically, we focus on the identifica-
tion of explanatory KG paths in drug repurposing. This task



can be framed as a link prediction problem, where the goal
is to generate scientific hypotheses by inferring potential new
relationships between known entities, e.g., (minoxidil, treats,
hair loss).

Our novel approach employs reward and policy mecha-
nisms that consider desirable properties of scientific explana-
tion to guide a reinforcement learning (RL) agent in the iden-
tification of the explanatory paths. The approach further en-
riches explanatory paths with domain-specific ontologies, en-
suring that the explanations are both insightful and grounded
in established biomedical knowledge.

Our contributions include: (1) a method to extend RL
frameworks to consider scientific explainability properties
when generating explanatory paths; (2) a method to calculate
the relevance of explanatory paths that accounts for research
bias; (3) a method to compose fully-fledged scientific expla-
nations by integrating relevant paths with descriptive ontol-
ogy classes; (4) the first evaluation of knowledge-driven drug
repurposing explanation on three distinct benchmark KGs.

2 Related Work
KGs have emerged as critical tools in Explainable AI due to
their ability to model multi-relational data and generate inter-
pretable explanations. Despite significant advances, existing
methods face several challenges, particularly in domains like
biomedicine, where biologically relevant explanations are es-
sential for scientific validation.

In the biomedical domain, KGs have been applied to jus-
tify AI-driven predictions for drug repurposing. For exam-
ple, PoLo [Liu et al., 2021] combines representation learn-
ing with logical constraints to identify interpretable reason-
ing paths. Similarly, Ozkan et al. [Ozkan et al., 2023] ex-
tended the PREDICT framework [Gottlieb et al., 2011] to
rank explanatory paths by their relevance to drug indications,
incorporating established biomedical relationships. Stork et
al. [Stork et al., 2023] proposed to improve RL-based drug
repurposing using phenotype annotations. These efforts build
on RL frameworks for multi-hop inference, such as DeepPath
[Xiong et al., 2017] and MINERVA [Das et al., 2017]. How-
ever, they prioritize predictive accuracy over other desirable
properties for scientific explanation, such as relevance, limit-
ing their utility in scientific contexts.

3 Problem Definition
Consider a knowledge graph G = (E ,R, F ), where E is a set
of entities,R is a set of relations, and F ⊆ E ×R×E is a set
of triples denoted as (s, r, o) for subject, relation, and object.
We will often abuse notation and directly define G as the set
of triples such that we can write (s, r, o) ∈ G.

Modern theories of scientific explanation often emphasize
explanatory virtues such as empirical adequacy, simplicity,
scope, and coherence. We adopt the taxonomy proposed
in [Keas, 2018] for scientific theories where four types of
explanatory virtues are identified: (i) Evidential theoretical
virtues: evidential accuracy, causal adequacy, and explana-
tory depth; (ii) Coherential theoretical virtues: internal con-
sistency, internal coherence, and universal coherence; (iii)

Aesthetic theoretical virtues: beauty, simplicity, and unifica-
tion; (iv) Diachronic theoretical virtues: durability, fruitful-
ness, and applicability.

By virtue of being domain models and representing ex-
plicit relations between entities, KGs can naturally support
causal adequacy and contribute to explanatory depth by iden-
tifying causal mechanisms, e.g., vincristine –treats→ lym-
phatic system cancer –associated with→ TIA 1 gene ← as-
sociated with– hematologic cancer. Path and rule extraction
are common methods to offer explanations in graph theory
and link prediction [Meilicke et al., 2019; Liu et al., 2021;
Zhang et al., 2023] that align well with evidential virtues, in
particular causal adequacy. Moreover, KGs can also cover all
coherential virtues by affording mechanisms to ensure inter-
nal consistency and coherence (i.e., an explanation’s compo-
nents are not contradictory) and universal coherence (i.e., the
explanation fits well with extant knowledge). While aesthetic
virtues are generally considered less valuable, both their prag-
matic value — simpler or shorter explanations are easier to
grasp — and epistemic value (v. Occam’s Razor) are rele-
vant. Finally, diachronic virtues require additional time after
the initial explanation formulation and are therefore out of
our scope.

Having established paths as the core of our explanation
definition, we define a path of length k in G as a finite se-
quence of triples (ei, ri, ei+1) ∈ G for i = 1, . . . , k − 1,
which joins a sequence of distinct entities e1, . . . , ek ∈ E .
However, not all paths connecting the subject and object of a
hypothesis triple fit the criteria of scientific explainability. In
what regards to evidential virtues, a first challenge is ensuring
causal detail, which often translates to producing a chain of
intermediaries linking the entities at hand [Rosales and Mor-
ton, 2021]. A second challenge is ensuring the relevance of
explanations since an explanation that achieves causal detail
can still be vague and afford little scientific insight. For ex-
ample, an explanation for the hypothesis (sunitinib, treats,
renal cancer) that takes the form (sunitinib, is a, antineo-
plastic agent, treats, cancer, super class of, renal cancer) is
correct, causal, but not scientifically relevant. A third chal-
lenge lies in ensuring the completeness of explanations since
an adequate causal account often requires the interaction of
multiple factors rather than a single directed cause-and-effect
path. Ensuring universal coherence can also be a challenge
since many popular scientific KGs do not possess a schema
backed by an ontology, which limits the ability to ensure and
evaluate the logical coherence with the domain. Finally, a
fifth challenge is related to simplicity or parsimony and how
to ensure the pragmaticity of explanations without sacrificing
other relevant properties. Clearly, addressing the first four
challenges necessarily represents a trade-off with addressing
the fifth since ensuring a detailed, complete, relevant and uni-
versally coherent explanation very likely requires a larger and
more complex explanation.

4 Method
Our goal is to search, given a source node s, for paths to tar-
get nodes o seen in training and to generalize paths to unseen
targets during inference. To the best of our knowledge, no



exact path-finding algorithm fits our problem, as they typi-
cally require fixed source and target nodes and lack inherent
generalization. While heuristic search might offer some gen-
eralization, we opted for RL due to its scalability, flexibility,
and crucial generalization capabilities.

4.1 Overview
Our approach generates scientific explanations for a hypoth-
esis h — described as triple in a KG G — as a subgraph Gh
that integrates a set of relevant explanatory paths p ∈ P and
relevant ontology classes that describe entities in the path.
An explanatory path for hypothesis h is a path that connects
the subject and object entities of h, respectively sh and oh,
through a chain of relevant related entities.

Our explanation generation strategy addresses the chal-
lenges of causal detail and relevance by using reinforcement
learning, conditioned on the hypothesis to validate, to find
explanatory paths. It employs a reward-shaping mechanism
to ensure multi-objective optimization regarding fidelity (i.e.,
to ensure paths successfully connect sh and oh) and rele-
vance (aiming to maximize the information content (IC) of
a path, a measure of the specificity of the entities compos-
ing it). Simplicity is ensured by a policy that ensures the RL
agent produces paths without loops and that terminate when
oh is reached. These explanatory paths are then filtered to in-
clude those that are maximally relevant and representative of
different explanation types, ensuring completeness. These are
grouped to form the backbone of Gh, which is then enriched
by including type axioms connecting entities in Gh to relevant
ontology classes, thereby affording a richer contextualization
of the explanation subgraph, facilitating universal coherence

The overall approach is illustrated in Figure 1. Given a
biomedical KG and a set of drug repurposing predictions to
be individually explained, the method follows a three-phase
process: (1) computing the information content of entities;
(2) finding explanatory paths; (3) generating scientific expla-
nations.

4.2 Information Content
An essential aspect of our method is to compute the relevance
of paths. Our hypothesis is that paths involving less frequent
entities are more likely to reveal meaningful relationships, re-
sulting in explanations that are both insightful and represen-
tative of the underlying scientific knowledge. We define the
relevance of a path as the average of the information content
(IC) of the edges that compose it.

We formalize the concept of IC from information theory,
taking into account node degree counts: the number of edges
(relations) connected to a node (entity). First, we define the
IC of an entity v that appears in a triple, either as the subject
or object. The informativeness of an edge is determined by
the average IC of the two entities it connects. To compute
the IC of an entity, we introduce the concept of Clustered
IC, which refines the IC calculation by analyzing a clustered
graph instead of the original graph. The intuition is to di-
minish possible bias resulting from heterogeneous granular-
ity levels due to over-studied and under-studied areas, as well
as cases where minor variations of the same concept are in-
cluded. This can be further refined by evaluating nodes within

the context of specific relations, reflecting the intuition that
the significance of an entity may vary depending on the nature
of the relationships it engages in, providing a more detailed
and accurate measure of path informativeness.

IC of a Node
Let T = (S,R,O) be a random variable for the KG triples.
Sampling from T means sampling a random triple from the
graph.

Definition 1. The IC of a node v ∈ E , denoted IC(v), is
defined by the information content of the event (S = v) ∪
(O = v). It measures the surprisal of a node appearing as a
subject or object in a randomly sampled triple.

We can derive the following (proof in appendix):

Theorem 1. Considering each triple of the graph as inde-
pendently and identically distributed, we have

IC(v) = − log
deg(v)

|G|
. (1)

where deg(v) the total degree of an entity node in the knowl-
edge graph,

Clustered IC of a Node
The IC of a node can be modified to account for poten-
tial node degree bias due to different granularities, whereby
in some subdomains, two very similar concepts are repre-
sented by different entities. This can be an effect of research
bias [Reynolds et al., 2021] and not necessarily translate to a
scientifically meaningful measure of frequency. Let A and A′

be two such similar entities and B a third entity. Two possible
issues can arise: (i) non-meaningful relations between A and
A′ (is a or synonym of ) can ”boost” their node degrees, (ii)
inversely, some relations highlighted only between A′ and B
but not between A and B (whereas, in practice, they should
hold) can ”hide” the true node degree of A. Such issues can
artificially increase or decrease the node degree of concepts.
The clustered graph aims to group semantically similar con-
cepts together to mitigate this.

Consider the set of clusters C = {C1, C2, . . . , Ck} such
that each Ci ⊆ E and

⋃k
i=1 Ci = E . Consider the clustering

function κ : E → C. Each entity v ∈ E belongs to exactly one
cluster κ(v) = Ci. The clusters are assumed to group entities
per semantic similarity.

Given the KG G = (C,R, F ), we derive a clustered graph
Gc = (C,R, Fc) where Fc = {(Ci, r, Cj)|∃(u, r, v) ∈
F s.t. u ∈ Ci and v ∈ Cj}. Intuitively, the clustered graph
derived from G is a graph where the nodes are grouped into
clusters and there is an edge between two clusters if any nodes
in these clusters were connected by an edge in G.

As for the original graph, we derive random variables for
the clustered graph (Sc, Rc, Oc) .

Definition 2. The clustered IC (CIC) of a node v ∈ E is
defined by the information content of the event (Sc = κ(v))∪
(Oc = κ(v)). It measures the surprisal of a node belonging to
one of the subject cluster or object cluster randomly sampled
in a triple from the clustered graph Gc.

Similar to before, we can derive (proof in appendix):



Figure 1: Overview of the approach to generate scientific explanations, with three main phases: (1) pre-process KG, where the information
content is computed, (2) find explanatory paths, where a reinforcement learning agent is trained, and (3) create scientific explanations, where
the learned paths are integrated with relevant ontologies to improve context.

Theorem 2. Considering each triple of the clustered graph
as independently and identically distributed, we have

ICc(v) = − log
deg(κ(v))

|Gc|
(2)

where the degree of κ(v) is calculated in the clustered graph.
Definition 3. The Clustered IC of a node by relation type is
a variant of CIC where node degree considers only edges of a
given type deg(v, r).

To support the CIC computation, we generated embed-
dings using OWL2vec* [Chen et al., 2021], which were then
clustered using K-means, with the number of clusters set to
10% of the total node count.

4.3 Finding Explanatory Paths
We adapt the RL path-finding strategy proposed in [Das et
al., 2017] to our hypothesis validation purpose. It specifies a
deterministic partially observed Markov decision process as
a 5-tuple (S, O, A, T, R).

States. The state space S consists of all combinations in
E×E×E . Intuitively, we want a state to encode the hypothesis
subject sh and object oh, as well as a location of exploration
e (current location of the RL agent). Therefore, a state S ∈ S
is represented by:

S = (e, sh, oh)

Observations. The complete state of the environment is
not observed since the agent only knows its current location
e and the hypothesis subject. Formally, the observation func-
tion O : S → E × E is defined as:

O = (e, sh)

Actions. The set of possible actions AS from a state S =
(e, sh, oh) include all edges connected to the current node e
in G or a decision to stop. Formally:

AS = {(e, r, ed) ∈ F : S = (e, sh, oh), r ∈ R, e ∈ E}∪{STOP}

This means that at each state, the agent decides either to
stop or to continue to destination node ed.

Transition. Environment evolution is deterministic, sim-
ply updating the state to the new entity selected by the agent.

Rewards. The reward function captures two objectives:

• Fidelity: A scientific explanation should necessarily
align with the hypothesis. Fidelity indicates whether the
path-finding algorithm successfully connects sh and oh.
Formally, if ST = (e, sh, oh) is the end state and e = oh,
RFidelity(p) = 1, else RFidelity(p) = 0.

• Relevance: A scientific explanation should provide de-
tailed insights into the mechanisms underlying the hy-
pothesis. Formally, when the end state is reached,
the average IC of the path p is computed to arrive at
RRelevance(p).

Formally, the final reward Rfinal of a path p is given by:

Rfinal(p) = RFidelity(p)×RRelevance(p)

Policy Network. We extend the policy proposed in [Das et
al., 2017] with an early stopping mechanism. This policy —
based on LSTMs to encode the history of actions and obser-
vations — presents desirable properties for explanatory path
generation on KGs, namely that it is permutation-invariant to
edge ordering and history-dependent, with decisions dt map-
ping the history Ht to a probability distribution over available
actions ASt . The history Ht = (Ht−1, At−1, Ot) records
past actions (At−1) and observations (Ot). When the policy
network chooses an action from all available actions,AST , if
ST = (e, sh, oh) and e = oh, the agent does not take any fur-
ther actions. This mechanism not only reduces unnecessary
exploration but also promotes simplicity. The original policy
resorted to a special action which goes from a node to itself,
which resulted in possible loops and repetitiveness.



Training. We extend training to 30 rollouts, following [Liu
et al., 2021].

4.4 Generating Scientific Explanations
To construct scientific explanations for predictions, we be-
gin by analyzing all explanatory paths found in the previous
step and grouping them based on their metapaths, i.e., the
sequence of entity types and relations in the path. For each
metapath, we select the path with the highest IC. These se-
lected paths are then merged into a graph and enriched with
the lowest common ancestors (LCA) between all consecutive
entities in a path. More formally,

Gh =
⋃
p∈P

p ∪
⋃

(ei,ei+1)∈p

LCA(ei, ei+1)

5 Experiments
5.1 Drug repurposing
To evaluate the effectiveness of REx1 in generating scientifi-
cally valid explanations, we applied it to the task of validat-
ing drug repurposing hypotheses. Drug repurposing identifies
new therapeutic uses for existing drugs, and such a hypoth-
esis can be formulated as a triple (drug, treats, disease).
As benchmarks for our experiments, we used well-known
biomedical KGs that describe drugs, diseases and other rel-
evant entities for drug repurposing2: Hetionet [Himmel-
stein et al., 2017], PrimeKG [Chandak et al., 2023], and
OREGANO [Boudin et al., 2023]. Hetionet is an integrative
biomedical KG combining data from 29 sources, including
genes, compounds, and diseases, and with more than 45,000
entities. PrimeKG is a precision medicine-oriented knowl-
edge graph spanning multiple biological scales, such as path-
ways, phenotypes, and drug indications, with nearly 130,000
entities. OREGANO is specifically designed for drug repur-
posing, aligning experimental data with drug-disease associ-
ations and more than 98,000 entities. In each case, inverse
edges were added when not provided in the KG. More de-
tailed statistics can be found in Supplementary Material.

5.2 KG enrichment
Since the benchmark KGs are semantically shallow and do
not include an ontology-based schema, we enriched each
KG by aligning it to relevant domain ontologies, specifically
the National Cancer Institute Thesaurus (NCIT) [Hartel et
al., 2005] and the Chemical Entities of Biological Interest
(ChEBI) [Degtyarenko et al., 2007], which accurately de-
scribe drugs, diseases and other entities in the KGs. These
alignments were generated using the ontology matching sys-
tem AML [Faria et al., 2023].

To evaluate explanation relevance, the paths identified in
Hetionet were transformed into metapaths. These metapaths
were then compared to a ground truth derived from the find-
ings of Himmelstein [Himmelstein et al., 2017].

1Code and Supplementary Material available at
https://github.com/liseda-lab/REx.

2Data repository links in Supplementary Material.

6 Results and Discussion
6.1 Predictive Performance Evaluation
We evaluated the predictive performance of REx’s explana-
tory paths against several baseline methods, including MIN-
ERVA, a RL-based method that answers queries through
multi-hop reasoning [Das et al., 2017] and PoLo, that extends
it with logical constraints to improve interpretability [Liu et
al., 2021] (details in Supp. Material).

This evaluation assesses the most basic property of a sci-
entific explanation — if it aligns with the hypothesis. The
reported values for REx, PoLo, and MINERVA correspond to
the calculation of a mean across five independent successful
training runs, with a standard deviation between 0.004 and
0.028. All other results were reported in [Liu et al., 2021].

Table 1 presents the results of various methods on the
Hetionet KG. REx outperformed all state-of-the-art methods,
achieving the highest MRR of 0.427. This indicates that REx
effectively integrates fidelity, simplicity, and relevance to find
robust explanations.

Table 1: Performance comparison of various methods for predic-
tions on Hetionet based on Hits@1, Hits@3, Hits@10, and MRR
metrics.

Method Hits@1 Hits@3 Hits@10 MRR
AnyBURL 0.229 0.375 0.553 0.322
TransE 0.099 0.199 0.444 0.205
DistMult 0.185 0.305 0.510 0.287
ComplEx 0.152 0.285 0.470 0.250
ConvE 0.100 0.225 0.318 0.180
RESCAL 0.106 0.166 0.377 0.187
R-GCN 0.026 0.245 0.272 0.135
CompGCN 0.172 0.318 0.543 0.292
pLogicNet 0.225 0.364 0.523 0.333

MINERVA 0.264 0.409 0.593 0.370
PoLo 0.314 0.428 0.609 0.402
REx 0.338 0.461 0.609 0.427

Similarly, Table 2 and Table 3 highlight the results on
PrimeKG and OREGANO with the best-performing methods
on Hetionet. Here, REx once again surpassed the state of the
art, achieving an MRR of 0.376 on PrimeKG and 0.278 on
OREGANO. These results confirm that REx is able to pro-
duce explanations that have more predictive power than com-
parable methods across a variety of KGs.

Table 2: Performance comparison for predictions on PrimeKG based
on Hits@1, Hits@3, Hits@10, and MRR metrics.

Method Hits@1 Hits@3 Hits@10 MRR
MINERVA 0.262 0.420 0.546 0.359
PoLo 0.245 0.408 0.526 0.344
REx 0.286 0.429 0.544 0.376

To evaluate the relevance of explanatory paths, we com-
puted the average IC for each path generated with REx, MIN-
ERVA, and PoLo. The distribution of ICs shown in Figure 2



Table 3: Performance comparison for predictions on OREGANO
based on Hits@1, Hits@3, Hits@10, and MRR metrics.

Method Hits@1 Hits@3 Hits@10 MRR
MINERVA 0.133 0.200 0.489 0.220
PoLo 0.171 0.292 0.473 0.259
REx 0.171 0.327 0.533 0.278

clearly indicates that REx’s paths have a higher IC in general
and that it does not generate paths of low relevance, with the
vast majority above 0.4. While PoLo does not fall far behind,
MINERVA produces a larger portion of paths with lower IC.
This underlines that the reward mechanism employed by REx
effectively excludes low-relevance paths.

Figure 2: IC distribution for the methods MINERVA, PoLo, and
REx using the Hetionet dataset.

To analyze the contribution of each component to the over-
all performance of REx, we conducted an ablation study by
systematically removing individual components of the ap-
proach:

• REx: The complete version of our approach.

• REx -s: A variation where the early stop mechanism is
removed, sacrificing the simplicity virtue.

• REx -r: A variation where the relevance is excluded
from the final reward calculation.

• REx -rs: A variation where both simplicity and rele-
vance are not considered, leaving only fidelity as a final
reward.

The results shown in Table 4 indicate that when the early
stopping mechanism was removed (-s), the MRR dropped in
all datasets. This result highlights the importance of generat-
ing concise explanations, as longer paths can increase com-
plexity and hinder interpretability. Similarly, the removal
of relevance (-r) resulted in a noticeable decrease in perfor-
mance, especially for Hetionet. This demonstrates that in-
corporating information content to ensure biologically mean-
ingful paths is crucial for finding scientifically valid expla-
nations. The combination of removing both the early stop-
ping mechanism and relevance (-rs) led to the most signifi-
cant reduction in performance in the cases of PrimeKG and

OREGANO, emphasizing the complementary roles of these
two components.

Table 4: Ablation of REx based on Hits@1, Hits@3, Hits@10, and
MRR metrics. Bold indicates best result, italics second best.

KG Method Hits@1 Hits@3 Hits@10 MRR

H
et

io
ne

t REx -s 0.309 0.446 0.627 0.407
REx -r 0.295 0.432 0.600 0.392
REx -rs 0.302 0.446 0.609 0.404
REx 0.338 0.461 0.609 0.427

Pr
im

eK
G REx -s 0.278 0.426 0.544 0.370

REx -r 0.284 0.431 0.554 0.376
REx -rs 0.277 0.429 0.540 0.369
REx 0.286 0.429 0.544 0.376

O
R

E
G

A
N

O REx -s 0.143 0.314 0.543 0.264
REx -r 0.149 0.244 0.514 0.244
REx -rs 0.105 0.222 0.498 0.209
REx 0.171 0.327 0.533 0.278

Table 5 presents a comparative evaluation of different ap-
proaches for computing IC within the REx using Hetionet.
The results show that Clustered IC by Relation yields the
highest scores overall, underscoring the value of tailoring IC
calculations to specific relations. Interestingly, IC outper-
forms the Clustered IC method in every metric, indicating
that an IC that is clustered and blind to relation type loses
relevant information (details in Supp. Material).

Table 5: Performance comparison for different types of IC on REx
using Hetionet based on Hits@1, Hits@3, Hits@10, and MRR met-
rics.

Method Hits@1 Hits@3 Hits@10 MRR
IC 0.290 0.437 0.595 0.391
CIC 0.264 0.419 0.591 0.370
CIC by Relation 0.338 0.461 0.609 0.427

6.2 Ground-truth evaluation
To assess the relevance of the explanatory paths generated
by REx, we compared them to the ground truth paths iden-
tified in [Himmelstein et al., 2017], which are recognized as
key mechanisms for drug repurposing. This comparative ap-
proach draws on the principle of analogy [Thagard, 1978;
Thagard, 1989], where new explanatory mechanisms gain
credibility when they align with well-established causal struc-
tures.

Our analysis showed that REx identified 12 distinct types
of explanatory paths. Of these, 8 path types were fully consis-
tent with the ground truth, confirming their biological plau-
sibility and alignment with existing biomedical knowledge.
The remaining 5 path types (in Supp. Material), while not
explicitly included in the ground truth, still provided biolog-
ically coherent insights that could help formulate novel hy-



potheses about drug–disease relationships. In fact, the ma-
jority of these paths are similar to ground truth ones but use
palliates instead of treats, which is semantically similar. By
uncovering both validated and new explanatory paths, REx
demonstrates its ability to both replicate known mechanisms
and offer novel and plausible explanations that may advance
our understanding of drug repurposing.

Regarding path frequency in the datasets, each knowledge
graph exhibits distinct mechanistic preferences (in Supp.
Material), with Hetionet showing a clear preference for
side effect-based paths, Oregano emphasizing gene-mediated
paths and PrimeKG generating a substantial number of paths
solely based on (drug – indication — disease) chains. The
distribution of path frequencies is similarly skewed across all
KGs, with a few highly frequent paths and many rare ones.
This suggests that while certain drug repurposing mecha-
nisms are well-described, there may be numerous specialized
pathways that might be relevant for specific cases. Further
analysis revealed that multiple explanatory paths can be iden-
tified for a single prediction, with an average of 12 relevant
paths per drug repurposing hypothesis in Hetionet. This di-
versity of explanatory paths highlights the complexity of drug
repurposing and the importance of considering multiple ex-
planatory paths when producing an explanation.

6.3 Domain Expert Evaluation
We recruited two life sciences graduates familiar with drug
repurposing to evaluate the validity of 10 randomly selected
full REx-generated explanations for the Hetionet dataset (in
Supp. Material). Each REx explanation was presented along-
side a corresponding MINERVA explanation.

Figure 3: Explanation between Vincristine and Hematologic Cancer
from Hetionet dataset.

The experts rated both explanations for each drug repur-
posing hypothesis on a scale from 1 to 5, reflecting their sat-
isfaction with the explanation quality ranging from 1 (very
low) to 5 (very high) and consulting any external references
they deemed necessary. Figure 4 depicts the experts’ ratings
for each explanation. Although both experts occasionally dif-
fer in how highly they rate the same method, the overall trend
across all 10 explanations favours REx on every occasion.

To complement this analysis, we provide a literature-based
validation of a REx generated explanation for the hypothe-
sis (vincristine, treats, hematologic cancer) presented in Fig-

Figure 4: Comparison of the experts rating for 10 drug–disease re-
purposing explanations for Hetionet generated by REx (pink) and
MINERVA (green).

ure 3. A literature search revealed the scientific validity of
this explanation, since both vincristine and vinblastine be-
long to the Vinca Alkaloid family, and both can cause neuro-
toxicity (including hearing loss) [Madsen et al., 2019]. Fur-
thermore, cytarabine and vincristine are therapeutic options
for lymphatic system cancers, which are associated with the
TIA1 gene, which regulates the translation and stability of
mRNAs involved in apoptosis, proliferation, and stress re-
sponses, relevant processes for cancer cell survival [Sánchez-
Jiménez et al., 2015]. In turn, TIA1 is associated with hema-
tologic cancers.

7 Conclusion
We propose a novel method, REx, for generating scientific ex-
planations of hypotheses based on KGs. Our method fulfils
several desirable properties of scientific explanations, namely
causal detail, relevance, completeness, coherence, and sim-
plicity. It employs an RL-based approach guided by a dual
reward that values both fidelity to the hypothesis and rele-
vance to generate explanatory paths. The RL approach also
considers an early stopping mechanism to consider simplic-
ity. Paths are combined into a graph that is enriched with
relevant ontology classes to ensure completeness and coher-
ence. Notably, our approach can integrate a wide range of RL
frameworks designed for graph-structured data, allowing our
methodology to benefit from future evolutions in this field.

REx outperforms the state of the art in predictive perfor-
mance, produces more relevant explanatory paths and results
in explanations that are considered of better quality by ex-
perts in three benchmark tasks for drug-repurposing hypoth-
esis validation. Nevertheless, the predictive performance of
both REx and other state-of-the-art methods remains fairly
modest, indicating that in many cases, no explanation can be
found. This can be due to KG incompleteness or even to a
lack of scientific evidence, so further analysis is required to
elucidate this aspect.

Our experiments show that REx generalizes across differ-
ent KGs, and its extension to other domains and applications
is, in principle, feasible. Furthermore, REx can be applied
to hypotheses derived from alternative data sources or meth-
ods by modeling them as new triples within a relevant KG,
thus broadening its applicability beyond KG-based hypothe-
sis generation.
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intracellular antigens function as tumor suppressor genes.
Cell Death & Disease, 6(3):e1669–e1669, 2015.

[Stork et al., 2023] Lise Stork, Ilaria Tiddi, René Spijker,
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