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Abstract
The integration of Machine Learning (ML) into healthcare solutions has been accelerated by the prolifer-
ation of Electronic Health Records (EHRs). While various studies have leveraged ML to predict clinical
outcomes, they often overlook the semantic context of clinical data. However, this context could be
easily captured using ontologies and knowledge graphs (KG) as tools in ML development.

EHRs are particularly suitable for KG representation, affording resources to improve predictive clinical
AI models and generate new data discoveries. Traditional KGs often neglect the temporal dynamics crucial
for maintaining understanding over time, however, recent advancements suggest incorporating temporal
dimensions into KGs, termed Temporal Knowledge Graphs (TKGs), as a promising approach for modeling
patient data. Despite the potential for TKGs, few resources exist to produce such representations within
the healthcare domain.

We propose a method to address this gap by establishing a framework for constructing general
edge-centric clinical TKGs. We employ lexical and transformer-based methods for semantic annotation,
mapping EHR concepts to biomedical ontologies. These annotations are paired with temporal stamping,
enabling tracking of patient progression through time points and intervals for KG facts.

This work provides a comprehensive approach for creating TKGs from EHRs, setting the foundation
for general clinical TKG construction whilst allowing the extension to multiple clinical datasets, thereby
advancing further ML applications in healthcare.
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1. Introduction

The surge in Machine Learning (ML) applications within healthcare, particularly for clinical
decision-making, has been notable due to the rise of Electronic Health Records (EHRs) systems [1,
2]. Studies have successfully appliedML to predict various clinical outcomes, includingmortality,
sepsis, and risk of readmission [3, 4, 5, 6], using data mining methods ranging from random
forests to recurrent neural networks. However, most of these approaches largely ignore the
context of clinical data, relying primarily on direct EHRs data extraction.
Ontologies play a crucial role in connecting data with scientific context by representing

domain entities and their relationships in a formalized manner [7]. By linking EHR data to
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ontologies through semantic annotations, one can provide additional information about the
meaning of the clinical data to ML systems. When data is organized according to the schema of
one or more ontologies, it forms a Knowledge Graph (KG). A KG is composed of entities and
relations structured as triples in graph format [8, 9, 10]. KGs go beyond mere knowledge bases,
as they can represent complex entities and relations in a way that reflects real-world domains.
This enables the incorporation of domain ontology knowledge and mappings across real data
entities [11], enhancing domain representation, interpretability, and explainability.

Health-related data such as EHRs are particularly well-suited for representation through KGs.
These KGs can enhance predictive clinical AI models by adding semantic information [2, 12,
3, 13], potentially revealing new data correlations and improving performance. However, one
critical oversight in traditional KG approaches is the neglect of time as a dynamic factor. Real-
world data, especially in the clinical field, changes over time and requires temporal consideration
to maintain logical coherence and accuracy. Non-KG-based ML techniques have highlighted the
significance of including time for more precise predictions [14, 15, 16]. In the clinical field, there
is a growing interest in using KGs to represent clinical data temporally [17, 18], particularly
for modelling patient data. Still, there is a lack of resources that are able to combine both the
semantic richness afforded by biomedical ontologies and temporal aspects.

In this work, we target this critical gap in healthcare data resources by proposing an approach
to encapsulate the semantic and temporal context of clinical entities in a KG representation.
As a case study, we apply this methodology to the MIMIC-III EHR data set [19]. Our approach
integrates several relevant knowledge engineering methods such as ontology selection, semantic
annotation and ontology alignment, and in particular, pairs semantic annotation with temporal
annotation so that every fact describing a patient has temporal context, enabling the tracking
of the patient’s progression. Our method focuses on building edge-centric TKGs, given the
abundance of downstream approaches built following that paradigm [20, 21, 22, 23, 24], thus
aiding in improving data interoperability and future ML applications in healthcare.

The resulting TKG comprises four biomedical ontologies representing about 60,000 hospital
stays with more than 27 million temporal facts.

2. Related Work

2.1. KG Construction

The methodology for constructing a KG should be tailored to relevant factors such as the
domain, the intended application, any pre-existing data sources, and the construction theme.
Building a KG from data sources includes two main steps: entity discovery, where entities
acquired from the source data constitute the nodes of the KG, and triple extraction, where these
entities are linked through their semantic relationships. These steps are usually preceded by
data pre-processing and data cleaning. Many KGs include a semantic backbone composed of
ontologies, and as such, the entity discovery step includes linking the entities to their types in
the ontologies that compose the KG. Entity linking, also known as semantic annotation, involves
associating data objects with ontology entities with well-defined semantics. Both more classical
NLP [25, 26, 27] and neural approaches have been employed in entity linking [28, 29, 30, 31, 32].



2.2. Entity linking in EHRs

EHRs can contain both highly structured data such as clinical codes and terminology (e.g.,
SNOMED-CT), as well as short-form and long form free text variables. While controlled
vocabularies allow for a straightforward inclusion in the KG, the annotation of free text poses
additional challenges due to the complexity of the biomedical vocabulary, the abundance of
polysemy, synonymy, acronyms and abbreviations, which result in ambiguity, and clinical free
text variables often contain spelling mistakes. The typical entity linking process takes text as
input and enriches it with entity mentions linked to nodes in a KG (or concepts in an ontology).
The task is commonly split into entity mention detection and entity disambiguation sub-tasks.

Many clinical semantic annotators rely on a combination of strategies, including text process-
ing, large-scale knowledge bases, semantic similarity measures and ML techniques [33, 34, 35,
36, 37]. Large Language Models (LLMs) have recently played a growing role in this task (e.g.,
[38, 39, 40]).

2.3. Temporal Knowledge Graphs

TKGs are an extension of traditional KGs [41] where facts about a domain include a temporal
dimension. There are two major paradigms in capturing time in KGs: edge-centric and node-
centric. In the edge-centric paradigm, the approaches are based on the notion of time-stamping
an edge to capture the validity of a fact. Most of the work that employs this paradigm is
not specifically concerned with the challenges in modelling the temporal dimension in KGs
but rather with how to explore it in the context of mining and ML applications. There are
well-established data sets, such as YAGO or DBPedia, that already have published temporal
knowledge graph resources for downstream tasks [42, 43, 44].

The node-centric paradigm captures the temporal dimension by modelling facts not as triples
but as instances of an event class with properties that capture the validity of the event. An early
notable effort in event modelling was the Simple Event Model (SEM) [45]. SEM represents data
from the Web as events, in and across various domains, driven by minimal commitment (e.g., no
cardinality restrictions, no functional or inverse functional properties, and Simple Knowledge
Organization System (SKOS) [46] is used to link to other vocabularies or event models to avoid
inheriting their constraints.) SEM has been used as the foundation for several event-based KGs,
including EventKG[47] and Open EventKG [48].

3. Methods

Our decision to model the TKG as edge-centric was motivated both by the fact that there is no
single central event in a hospital stay (but rather a sequence of several occurrences) and the fact
that the majority of temporal KG mining approaches are applicable to edge-centric TKGs [49].
Following [50], we define an edge-centric TKG as 𝐺 = (𝐸, 𝑅, 𝑇 , 𝐹 ), where 𝐸, 𝑅, and 𝑇 are

the sets of entities, relations, and timestamps, respectively. 𝐹 ∈ 𝐸 × 𝑅 × 𝐸 × 𝑇 is the set of all
possible facts. Respecting this definition, facts can take two forms: time-point facts, denoted
as 𝑠 = {ℎ, 𝑟 , 𝑡 , 𝜏 }, where ℎ, 𝑟, 𝑡, and 𝜏 are the head entity, the relation, the tail entity, and the
timestamp, respectively; and time-interval facts, denoted as 𝑠 = {ℎ, 𝑟 , 𝑡 , < 𝜏𝑠, 𝜏𝑒 >}, where ℎ, 𝑟, 𝑡,



Figure 1: Five step methodology developed in this work. The method first proposes a cleaning of the
data, consequently selects and aligns ontologies appropriate for annotation and annotates the entities
to generate semantic triples and temporal facts to develop a final TKG.

and 𝜏𝑠, 𝜏𝑒 are the head entity, the relation, the tail entity, the timestamp for the start of the time
interval, and the timestamp for the end of the interval.
The methodology we designed includes five components, as shown in Figure 1. The first

component is Data pre-processing and cleaning where textual terms from selected tables from
the EHR database are prepared for entity linking. The second component is Entity Linking,
which includes selecting the most appropriate ontologies using an external ontology repository
and linking the textual terms to the most appropriate ontology classes. The third component is
Ontology Alignment, which aligns the selected ontologies to increase their connectivity in the
TKG. The fourth component, Fact Creation, creates KG facts to represent entries in the EHR,
linking a patient stay to the appropriate ontology class that captures that specific entry. Finally,
the fifth component is dedicated to the Temporal annotation of these facts, where every created
fact is annotated with a time-point or time interval.

The resulting KG describes patients under multiple ontologies that cover the appropriate do-
mains, with each fact about a patient including a temporal dimension. A subgraph representing
a patient in the final TKG is given in Figure 2.

3.1. Data Pre-processing and Cleaning

Although some information in EHRs is recorded using controlled vocabularies or terminologies,
such as the ICD terminology, many entries are filled in manually by clinicians. The goal of this



Figure 2: TKG portion with temporal facts for initial diagnosis, procedures and prescriptions. Patient
facts are annotated to an ontology class with subsequent ontology relations represented in the TKG.

step is to minimize the impact of errors and inconsistencies found in EHR entries in the form of
clinical free text or terminology codes.
For clinical free text, we apply the following criteria:

• The empty and inconsistent entries (e.g., very short or with irrelevant symbols) are
excluded.

• Incomplete entries are kept because the annotators will try to generate insightful annota-
tions.

• Entries with more than one term are decoupled (e.g., multiple diagnoses split by comma).

For terminological codes, cleaning focuses on adherence to terminological constraints:

• Empty entries are excluded.
• Faulty formatted codes are corrected to follow the terminology guidelines (e.g.: E3924 is
corrected to E392.4).

3.2. Entity Recognition and Linking

When EHR entries are in free text, the entities they refer to need to be linked to relevant
biomedical ontologies. This step requires both Ontology Selection — to identify the relevant
ontologies that best describe the text entries — and Semantic Annotation — to link each text
entry to one or more relevant ontology classes.



3.2.1. Ontology Selection

Our approach employs an ontology selection method that, given a list of input textual terms
and an ontology repository, outputs based on coverage, a sorted set of ontologies.
While different ontology selection methods can be used in this step, we employed the Bio-

Portal Recommender platform [51] since it is linked to the largest repository available, which
contains more than 1000 biomedical ontologies. The BioPortal Recommender successfully han-
dles misspellings and uses a straightforward dictionary-based approach to create annotations
of textual terms to ontology classes, which are then employed to assess how well an ontology
describes a set of terms. We utilize the standard text processing capabilities and weight configu-
rations of the Recommender. To operate the BioPortal Recommender, we use input information
from a cleaned set, in line with BioPortal’s guidelines, and an ontology repository that has been
pre-selected to ensure domain relevance. This pre-selection facilitates the choice of an ontology
for annotation based on its coverage, selecting the one that offers the best coverage.

3.2.2. Semantic Annotation

We propose two alternatives to the annotation process for the free text variable: a lexical
similarity approach designed for full-text search, and a large language model-based approach
that uses sentence-transformers for semantic search.

Lexical similarity-based approach

Lexical similarity can bemeasured through string similarity algorithms such as Jaccard Similarity,
Cosine Similarity, Levenshtein Distance, etc. Given the large size of the vocabularies both in
the EHR data and for each selected ontology, we developed an annotation approach based on
the high-performing search engine ElasticSearch (ES)[52] to find the best matches between an
ontology’s vocabulary (i.e., its textual component in the form of entity labels) and the EHR
textual entries. The search step for each EHR term outputs the six best-matching ontology
classes. To select the single best matching class, we measure the Levenshtein Distance between
the class label and the input term of every candidate match, and select the best scoring class
provided its similarity is above a threshold of 0.6 (empirically determined).

Transformer-based approach

Lexical matching methods rely on keyword-based linking between input entities and document
spaces [53], ignoring contextual and semantic information. However, vocabulary ambiguities,
which are very common in clinical data, are challenging and lead to mismatches. An alternative
for more informed matches is semantic search.

Semantic search is an alternative to traditional keyword-based searches [54] that incorporates
semantic information in the search process [53]. Semantic search employs LLMs to generate
numerical vector embeddings that represent textual terms, and uses vector operations to compare
them. We used a pre-trained sentence transformer [55] — multi-qa-mpnet-base-dot-v11 –

1a MPNet [56] family model designed specifically for semantic search and trained on a large and multi-source
question answering set. Fine tuned model available at https://huggingface.co/sentence-transformers/multi-qa-



to generate dense vector representations for both ontology class labels and EHR terms and
computed the similarity for each pair using the dot product. Each EHR entry was annotated to
the class ontology with the most similar vector.

3.3. Ontology Alignment

Ontology matching (OM) and alignment are operations to enhance the interoperability and
integration of different domain data sources. OM focuses on establishing correspondences
between different ontology classes, taking two distinct ontologies, and producing an alignment
that is a collection of equivalence semantic relations or mappings of their entities [57, 58].

The necessity for ontology alignment in EHR-related data comes from the diversity of domains
and ontologies. The alignment allows a gate between the different ontologies for interoperability
and to facilitate downstream tasks that establish paths in a KG.
We employed the AgreementMakerLight (AML) system — one of the best performing OM

systems [59] — to generate a fast and reliable alignment between all the biomedical ontologies
used. For every alignment, each mapping is transformed into an equivalent statement between
the two classes formulated as ’owl: equivalent class’ effectively linking the ontologies.

3.4. Triple Extraction

Triple extraction transforms clinical data structured according to the EHR model into the KG
model. All the acquired and annotated entities will be mapped to the KG through relations to
the patients and their hospital stays. Each patient is represented by a node (instance) in the KG
with associated triples for properties.

For each patient, we first acquire the set of related EHR entries according to their type
(e.g., diagnosis, drug prescriptions, etc.). For each entry, if there is a semantic annota-
tion to an ontology class, a simple triple is constructed according to the KG model 𝑡 =
{𝑝𝑎𝑡𝑖𝑒𝑛𝑡, 𝑟 𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦_𝑐𝑙𝑎𝑠𝑠} and using the appropriate relation (see Figure 2).

3.5. Temporal Annotation

The temporal annotation adds temporal information to the patient’s triples, capturing the
validity period of the relation described by the triple. The process involves stamping the facts
with the time stamps contained in the patient’s entries on the data set.

On EHR data, the temporal information is represented in datetime variables formatted as
𝑌 − 𝑚 − 𝑑, 𝐻 ∶ 𝑀 ∶ 𝑆. Each relation is described in the patient’s data entry with either one or
two time entries representing instantaneous facts or facts with a given duration or validity.
Following the definitions in section 3, to model instantaneous facts, we add a single time

stamp to the original triple, resulting in a time-point fact, and to model a fact with a specific
duration, we add two timestamps marking the beginning and end of the fact’s validity, resulting
in a time-interval fact.
The set of all temporal facts, ontologies and alignments represents the final TKG.

mpnet-base-dot-v1



4. Results

We applied the proposed methodology to the generation of an ontology-rich TKG based on the
MIMIC-III dataset. We created two versions of the TKG, one describing full hospital stays and
the other only ICU stays.

4.1. Data

The medical data used in this project is sourced from the MIMIC-III dataset, a substantial, openly
accessible database containing de-identified health data from patients admitted to the critical
care units of Beth Israel Deaconess Medical Center between 2001 and 2012. MIMIC-III includes
data from 53,423 unique hospital admissions for adult patients (aged 16 and older) and provides
a wide array of information such as demographics, hourly bedside vital sign measurements,
laboratory test results, procedures, medications, caregiver notes, imaging reports, and mortality
data (including post-discharge) [19].

4.1.1. Data Acquisition, Cleaning and Pre-Processing

The MIMIC-III data is available as a set of CSV files. These files were processed to extract
the necessary features to describe each patient. We focus on five specific features to allow a
simplistic yet realistic patient representation: Initial Diagnosis, Drug Prescriptions, Laboratory
Events, Procedures, and Final Diagnosis.
The diagnosis is collected at admission and at discharge. At admission, the initial diagnosis

is provided as a preliminary, free text entry and at discharge, the final diagnosis is coded using
The International Classification of Diseases, 9th Revision, Clinical Modification (ICD9CM)
glossary. Laboratory Events respect the Logical Observation Identifier Names and Codes
(LOINC) terminology and contain information regarding laboratory-based measurements and
include both in-hospital and out-of-hospital laboratory measurements from clinics the patient
has visited. Drug Prescriptions detail the medication orders attributed to a patient, formatted
according to National Drug Code (NDC). Procedures are coded and include the procedures
undergone by patients, specifically ICD9CM procedures.

The five types of features extracted from MIMIC-III are thus primarily structured as clinical
codes, except the initial diagnosis in short-form free text.

Table 1
Total Entity distribution after the data cleaning process.(*)Entries with multiple diagnoses where split

MIMIC-III Clean Coverage (%)

Initial Diagnosis 58,977 84,746 143*
Drug Prescriptions 4,156,451 4,151,991 99
Laboratory Events 27,854,056 26,851,670 96
Final Diagnosis 651,048 651,048 100
Procedures 240,096 240,096 100

The cleaning process (section 3.1) results showcased in Table 1 point to a reduced data loss.



Regarding the initial diagnosis, the cleaning process resulted in more diagnoses, since some
entries had more than one diagnosis.

4.1.2. Ontology Selection

The only feature type that required ontology selection is the Initial Diagnosis, since all others
respect particular controlled vocabularies. To match the clinical domain we pre-select NCIT,
SNOMEDCT, MeSH, MedDRA and EFO as the biomedical ontologies to select from.

Table 2
Ontologies characteristics.

Ontology Classes Properties

NCIT 163,184 97
LOINC 288,940 160
DRON 690,772 131
ICD9CM 22,533 7

After running the BioPortal’s Recommender, the ontology with the best coverage is theNCIT
(Figure 3), reaching about 30% coverage. This apparently low coverage is not unexpected due
to the limited dictionary-based approach of the Recommender. The selected set of ontologies
to use in the TKG is then NCIT, LOINC, ICD9CM and the Drug Ontology (DRON)2. Their
characteristics are described in Table 2

4.2. Semantic Annotation

The annotation process is conducted on the entire set of cleaned and unique diagnoses collected
from the MIMIC-III dataset, totaling 10, 117 diagnoses. In our implementation, we perform
two alternative processes: the Lexical similarity-based approach and the Transformer-based
approach. The Initial Diagnosis is matched to the NCIT.

4.2.1. Lexical similarity-based Annotation

The final similarity distribution for the NCIT-Diagnosis matches is shown in Figure 4. Lexical
similarity has a median similarity score of 0.78, with the annotations skewed towards the
higher lexical similarity values, meaning that the diagnosis are likely matched to a class with
an appropriate label. The lexical annotation covers 83.5% of the full diagnosis set.

4.2.2. Transformer-based annotation

The coverage obtained by the Transformer-based annotation is higher than the lexical approach.
The similarity distribution for the transformer-based approach has a median similarity score
around 0.8 and as in the lexical approach, annotations are skewed towards the higher similarity

2Because NDC is a private repository, we replace it with DRON. Both concern the same information, and DRON is
already prepared with information mapping class matches. Despite this change we were able to retain 75% of the
full drugs set.



Figure 3: Bioportal Recommender’s ontology coverage of the initial diagnosis set.

Figure 4: Similarity distribution over the mimic initial diagnosis entries for the transformer-based and
lexical-based approaches.

values. The two approaches measure two different types of similarity. As such one can only
argue that; the lexical similarity-based approach is capable of providing annotations that
match the ontology class labels and that the transformer approach is able to match entities to
conceptually appropriate ontology classes based on their semantics. This recognition paired
with the better coverage, motivated our decision to use the transformer annotations to build
the TKG.

4.3. Ontology alignment

We generated alignments between all selected ontologies. The alignment results are shown
in Table 3 and show a substantially larger alignment between ontologies with more related
domains.

4.4. Temporal Annotation

The initial diagnosis, laboratory events, procedures, and final diagnosis are all instantaneous,
and were represented as time-point facts. Drug prescriptions, however, have an associated
duration and were captured as time-interval facts.
To create the two versions of the TKG we propose — full hospital stay and ICU stay — we

extract two sets of temporal facts by filtering the full set according to their time stamps and



Table 3
AML automatic matcher alignments between NCIT, LOINC, ICD9CM, and DRONwithout any threshold
constraints on the alignments.

NCIT LOINC ICD9CM DRON

NCIT 7,506 1,685 4,760
LOINC 354 3,354
ICD9CM 9

Table 4
Temporal Annotation Collected from the mimic data set.

Hospital Stay ICU Stay

Time Stamped Time interval Time Stamped Time interval
Patient Annotations Patient Annotations Patient Annotations Patient Annotations

NCIT 81,520 - 79,644 -
LOINC 21,322,274 - 15,212,374 -
DRON - 2,773,939 - 1,606,234
ICD9CM D 634,709 - 129,203 -
ICD9CM P 237,947 - 54,605 -

Total 25,046,389 2,773,939 15,475,826 1,606,234

MIMIC-III’s specifications.
We apply the following criteria for the full hospital stay:

• Instantaneous annotations are selected for the full stay set only if their temporal stamp
falls within the stay period.

• Prolonged annotations are selected for the full stay set if all or a part of their validity
period falls within the stay period.

For the ICU stay, we apply the following criteria:

• Instantaneous annotations are selected to the ICU stay set if their temporal stamp precedes
or falls within the period of the patient’s ICU stay.

• Prolonged annotations are selected for the ICU stay set if all or a part of their validity period
falls within the stay period or if their validity period precedes the ICU stay completely.

The resulting set sizes are shown in Tables 4 and illustrate a substantially large set of temporal
facts for the MIMIC-III data set. The difference in size is expected since ICU stays tend to be
shorter than the overall hospital stays.

4.5. TKG description

After applying our methodology to the MIMIC-III clinical data set we were able to generate
the two TKGs. Table 5 describes some relevant statistics, with totals for the hospital stay TKG
(which encapsulates the ICU stay plus additional information recorded outside of the ICU).



Table 5
TKG summary statistics.

Hospital Stay TKG

Nodes
Classes 1,165,429

1,224,395Hospital stays 58,966
ICU stays 61,290

Edges

Mappings 17,668

27,837,996

Hospital Stay Time stamped patient annotations 25,046,389
Hospital Stay Time interval patient annotations 2,773,939
ICU Stay Time stamped patient annotations 15,475,826
ICU Stay Time interval patient annotations 1,606,234

The resulting TKG represents patients and their hospital stays (including ICU stays) relating
them to their diagnoses, prescribed drugs, conducted procedures and lab analyses which are in
turn described by a relevant biomedical ontology. Each of these relations contains a temporal
dimension, either a time-point or a time-interval. The TKG contains a total of 1.2 million nodes
and more than 27 million edges that describe every patient stay. All code and resource links
required to produce the TKGs are freely available 1. Researchers are required to formally request
access to the MIMIC-III dataset via a process documented on the MIMIC website 2.

5. Conclusions

One of the most challenging aspects of building a clinical TKG is the modelling decision
regarding temporal data. Our methodology focuses on edge-centric TKGs with both time-point
and time-interval facts to tackle the diversity in temporal data formats afforded by EHRs. Also
challenging is the handling of text-based EHR entries that are not bound by any terminological
constraints. The processing of such data is complex and entity recognition and linking requires
the identification of suitable ontologies. Our methodology emphasizes the importance of
proper ontology selection and alignment to maximize coverage and interoperability. Semantic
and temporal annotation are crucial steps for linking clinical entities to semantically relevant
ontology concepts, placing them at the appropriate time points or intervals.
We aim for the MIMIC-III TKG to serve as a resource for the community, supporting the

development of TKG mining approaches for predictive tasks. This involves exploring the
connections and nuances between the semantic context provided by biomedical ontologies and
the temporal aspects extracted from the EHR. In particular, by transforming MIMIC-III data
into a KG which includes several biomedical ontologies, we aim to support the application of
knowledge-based explanations [60]. We believe this ability is crucial to support the uptake of
artificial intelligence approaches in a clinical setting.

1at https://github.com/liseda-lab/clinical-temporal-kg under a GPL-3.0 license
2https://physionet.org/content/mimiciii/1.4/



Acknowledgments

”This work was partially supported by Fundação para a Ciência e Tecnologia through the PhD
scholarship ref. 2022.10769.BD, and the LASIGE Research Unit, ref. UIDB/00408/2020
(https://doi.org/10.54499/UIDB/00408/2020) and ref. UIDP/00408/2020 (https://-
doi.org/10.54499/UIDP/00408/2020). This work was also partially supported by the
KATY project, which has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 101017453, and in part by project 41,
HfPT: Health from Portugal, funded by the Portuguese Plano de Recuperação e Resiliência.

References

[1] P. Jensen, L. Jensen, S. Brunak, Mining electronic health records: Towards better research
applications and clinical care, Nature reviews. Genetics 13 (2012) 395–405. doi:10.1038/
nrg3208 .

[2] B. Goldstein, A. Navar, M. Pencina, J. Ioannidis, Opportunities and challenges in developing
risk prediction models with electronic health records data: A systematic review, Journal
of the American Medical Informatics Association 24 (2016) ocw042. doi:10.1093/jamia/
ocw042 .

[3] M. Scherpf, F. Gräßer, H. Malberg, S. Zaunseder, Predicting sepsis with a recurrent neural
network using the mimic iii database, Computers in Biology and Medicine 113 (2019)
103395. doi:10.1016/j.compbiomed.2019.103395 .

[4] B. Beaulieu-Jones, P. Orzechowski, J. Moore, Mapping patient trajectories using longitudi-
nal extraction and deep learning in the mimic-iii critical care database, Pacific Symposium
on Biocomputing. Pacific Symposium on Biocomputing 23 (2018) 123–132.

[5] Y.-W. Lin, Y. Zhou, F. Faghri, M. Shaw, R. Campbell, Analysis and prediction of unplanned
intensive care unit readmission using recurrent neural networks with long short-term
memory, PLOS ONE 14 (2019) e0218942. doi:10.1371/journal.pone.0218942 .

[6] Q. Lu, T. H. Nguyen, D. Dou, Predicting Patient Readmission Risk from Medical Text via
Knowledge Graph Enhanced Multiview Graph Convolution, Association for Computing
Machinery, New York, NY, USA, 2021, p. 1990–1994. URL: https://doi.org/10.1145/3404835.
3463062.

[7] F. Z. Smaili, X. Gao, R. Hoehndorf, OPA2Vec: combining formal and informal
content of biomedical ontologies to improve similarity-based prediction, Bioinfor-
matics 35 (2018) 2133–2140. URL: https://doi.org/10.1093/bioinformatics/bty933. doi:10.
1093/bioinformatics/bty933 . arXiv:https://academic.oup.com/bioinformatics/article-
pdf/35/12/2133/48935045/bioinformatics_35_12_2133.pdf .

[8] S. Auer, V. Kovtun, M. Prinz, A. Kasprzik, M. Stocker, M.-E. Vidal, Towards a knowledge
graph for science, 2018, pp. 1–6. doi:10.1145/3227609.3227689 .

[9] Q. Wang, Z. Mao, B. Wang, L. Guo, Knowledge graph embedding: A survey of approaches
and applications, IEEE Transactions on Knowledge and Data Engineering PP (2017) 1–1.
doi:10.1109/TKDE.2017.2754499 .

[10] L. Ehrlinger, W. Wöß, Towards a definition of knowledge graphs, 2016.

http://dx.doi.org/10.1038/nrg3208
http://dx.doi.org/10.1038/nrg3208
http://dx.doi.org/10.1093/jamia/ocw042
http://dx.doi.org/10.1093/jamia/ocw042
http://dx.doi.org/10.1016/j.compbiomed.2019.103395
http://dx.doi.org/10.1371/journal.pone.0218942
https://doi.org/10.1145/3404835.3463062
https://doi.org/10.1145/3404835.3463062
https://doi.org/10.1093/bioinformatics/bty933
http://dx.doi.org/10.1093/bioinformatics/bty933
http://dx.doi.org/10.1093/bioinformatics/bty933
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/35/12/2133/48935045/bioinformatics_35_12_2133.pdf
http://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/35/12/2133/48935045/bioinformatics_35_12_2133.pdf
http://dx.doi.org/10.1145/3227609.3227689
http://dx.doi.org/10.1109/TKDE.2017.2754499


[11] A. Kiryakov, B. Popov, I. Terziev, D. Manov, D. Ognyanoff, Semantic annotation, indexing,
and retrieval, Web Semantics: Science, Services and Agents on the World Wide Web 2
(2004) 49–79. doi:10.1016/j.websem.2004.07.005 .

[12] L. Huang, A. Shea, H. Qian, A. Masurkar, H. Deng, D. Liu, Patient clustering improves
efficiency of federated machine learning to predict mortality and hospital stay time using
distributed electronic medical records, Journal of Biomedical Informatics 99 (2019) 103291.
doi:10.1016/j.jbi.2019.103291 .

[13] H. Suresh, J. Gong, J. Guttag, Learning tasks for multitask learning: Heterogenous patient
populations in the icu (2018). doi:10.1145/3219819.3219930 .

[14] R. Zhang, W. Zhang, N. Liu, J. Wang, Susceptible temporal patterns discovery for electronic
health records via adversarial attack, in: Database Systems for AdvancedApplications: 26th
International Conference, DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings,
Part III 26, Springer, 2021, pp. 429–444.

[15] F. Xie, H. Yuan, Y. Ning, M. Ong, M. Feng, W. Hsu, B. Chakraborty, N. Liu, Deep learning
for temporal data representation in electronic health records: A systematic review of
challenges and methodologies, Journal of Biomedical Informatics 126 (2021) 103980.
doi:10.1016/j.jbi.2021.103980 .

[16] A. Woods, C. Meyer, B. Sauer, B. Cohen, Mining time-stamped electronic health records
using referenced sequences, arXiv preprint arXiv:2007.14336 (2020).

[17] J. Schrodt, A. Dudchenko, P. Knaup-Gregori, M. Ganzinger, Graph-representation of
patient data: a systematic literature review, Journal of medical systems 44 (2020) 86.

[18] R. M. Carvalho, D. Oliveira, C. Pesquita, Knowledge graph embeddings for icu readmission
prediction, BMC Medical Informatics and Decision Making 23 (2023) 12.

[19] A. Johnson, T. Pollard, L. Shen, L.-w. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits,
L. Celi, R. Mark, Mimic-iii, a freely accessible critical care database, Scientific Data 3 (2016)
160035. doi:10.1038/sdata.2016.35 .

[20] D. Liben-Nowell, J. Kleinberg, The link prediction problem for social networks, in: Proceed-
ings of the twelfth international conference on Information and knowledge management,
2003, pp. 556–559.

[21] L. Yao, L. Wang, L. Pan, K. Yao, Link prediction based on common-neighbors for dynamic
social network, Procedia Computer Science 83 (2016) 82–89.
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