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Abstract.
With knowledge graphs increasing in popularity, aligning and inte-

grating them is paramount to ensure their usefulness and reusability.
A key step in this process is ontology matching, whereby the seman-
tic models of KGs are aligned into a single cohesive semantic back-
bone. While finding simple pairwise equivalences between entities in
two ontologies is well addressed by state-of-the-art algorithms, find-
ing more complex mappings that can include multiple entities from
different ontologies is far from solved, despite their importance in
ensuring a deep and meaningful integration of KGs.

We propose a novel complex ontology matching approach that
explores geometric operations over the shared semantic space af-
forded by large language models, enabling the discovery of complex
mappings that are missed by purely lexical approaches. We evalu-
ate our approach on several biomedical ontologies using partial ref-
erence alignments and manual expert validation. Our approach im-
proves on the performance of a purely lexical approach while also
increasing the coverage of complex multi-ontology alignments by
20 to 80%, which translates to a 97% coverage of the source on-
tologies. Moreover, the manual evaluation of the mappings produced
by LLM shows that it achieves a high level of precision. This work
demonstrates that the use of LLMs can improve on the performance
of traditional lexical strategies.

1 Introduction

Knowledge Graphs (KGs) imbue data with semantics which both fa-
cilitates and augments information retrieval and knowledge discov-
ery [23]. As the semantic model of a KG is often composed of one
or more ontologies, ontology matching—the process of finding map-
pings between related ontologies—is essential both for its construc-
tion and enabling semantic interoperability between data modelled
under different KGs.

Traditionally, ontology matching algorithms have focused almost
exclusively on finding simple equivalence mappings between sin-
gle entities of two ontologies [6, 16, 7]. However, these mappings
will rarely suffice for achieving complete semantic integration be-
tween two ontologies, even within the same exact domain, as they
will differ to some extent on how they view and model that domain
[25]. For example, one ontology might have a richer class hierarchy
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whereas another relies more heavily on properties. Thus, the first on-
tology declares class S:predator as a subclass of S:animal, and in
the second ontology being a predator can only be asserted through
T :animal plus hunting an animal (where T :hunts is an object prop-
erty and T :animal is a class). Through a simple mapping, we can
only capture that S:predator is narrower than class T :animal, but
using a complex mapping we can detail the precise relationship be-
tween these aspects to enable full semantic integration: S:predator
≡ T :animal AND (T :hunts SOME T :animal). Yet finding complex
mappings is highly challenging, as evidenced by the fact that the per-
formance of state-of-the-art tools is underwhelming in comparison
with their performance in simple matching tasks [1].

Constructing KGs often requires matching numerous ontologies
in order to achieve a holistic view of a domain [14, 27]. When re-
stricted to finding simple mappings, the multi-ontology matching
problem has typically been broken down into a collection of pair-
wise matching problems, enabling the use of established ontology
matching algorithms [11, 14, 26, 27]. But to achieve full integra-
tion of ontologies, we must also contemplate complex mappings—
including mappings that contain expressions combining entities of
two or more ontologies—especially if we want to combine ontolo-
gies of deeply related but disjoint domains (e.g., human phenotypes,
phenotypic qualities, and human anatomy) to get a holistic view
of their super-domain (e.g., biomedicine). Complex multi-ontology
mappings are commonly found in biomedical ontologies, under the
name of logical definitions, as a result of a concerted effort from on-
tologists to achieve this type of semantic integration [20]. These log-
ical definitions are always 1:n complex mappings, as they connect
classes of the ontology in which they are present to expressions com-
bining entities from one or more target ontologies, e.g.: abnormal-
ity of glycosaminoglycan metabolism ≡ (quality AND (characteris-
tic_of_part_of SOME glycosaminoglycan metabolic process) AND
(has_modifier SOME abnormal)). To date, the only notable effort
at finding these types of mappings automatically achieved moderate
success but tackled only the simplest instances of the problem (map-
pings involving only two classes from exactly two target ontologies)
[22].

We propose a novel approach for tackling Complex Multi-
Ontology Matching (CMOM) in a 1:n setting without restrictions
on the arity of the mappings or on the number of ontologies, which
we call Complex Multi-Ontology Matching through Recursive Sub-



traction (CMOM-RS)1. CMOM-RS combines two recursive strate-
gies for candidate mapping generation: a strategy based on Large
Language Models (LLM) that exploits the semantic space conveyed
by embeddings through geometric operations; and a lexical strategy
that relies on string similarity. These two strategies complement each
other, as the lexical strategy is precise but restricted to cases of per-
fect syntactic matches, whereas the LLM-based strategy is less pre-
cise but provides much greater coverage. We evaluate these strate-
gies extensively using partial reference alignments extracted from
biomedical ontologies, as well as through a manual expert evaluation
of a sample of mappings for classes not in the reference.

The contributions of this work are CMOM-RS, a first approach to
CMOM with no arity restrictions, a first implementation of semantic
precision and recall metrics to the CMOM setting, and a set of partial
reference alignments for evaluating CMOM.

2 Problem Definition

In its original form, Ontology Matching aims to find mappings (or
correspondences) relating an entity of one source ontology with an
entity of one target ontology. A mapping is usually represented as a
tuple of the form< e1, e2, r, c > [6], where e1 and e2 are the entities
of the source and target ontology, respectively, r is the semantic rela-
tion between them (e.g.≡,≥,≤,⊥), and c is an optional confidence
score. The mapped entities can be classes, individuals, or properties,
and a set of mappings between two ontologies is called an alignment.

Complex Ontology Matching is an extension of the original ontol-
ogy matching paradigm whereby (complex) mappings can include
logical expressions—comprising one or more entities of the two
ontologies—in place of one or both e1 and e2 [25], to enable the cap-
turing of more precise semantic relations between the two ontologies.
These logical expressions commonly include intersection or union of
classes, as well as restrictions on the occurrence, domain, range or
cardinality of properties. Finding complex mappings is much more
challenging than finding simple mappings, as it involves linking sev-
eral entities in a mapping and also determining the logical constructs
with which to combine them. Acknowledging this challenge, some
evaluation efforts focus simply on whether algorithms can identify
the mapped entities, rather than the exact expressions in the map-
pings, under the rationale that a human curator can easily compose
the expressions if given the correct entities, but finding the entities
manually would be very time-consuming [30].

Multi-Ontology Matching is another extension to the original on-
tology matching paradigm, where the goal is to integrate N>2 ontolo-
gies through simple mappings, often contemplating only equivalence
relations [19]. As the problem is typically broken down into a collec-
tion of pairwise matching problems [11, 14, 26, 27], mappings are
still represented in the same way as in simple ontology matching, al-
though they may be merged into a final alignment wherein e1 and e2
can be entities of any of the N matched ontologies.

CMOM, as the name suggests, contemplates complex mappings in
a multi-ontology setting, including complex mappings with expres-
sions comprising entities of several ontologies. In its broadest, m:n
form, we can formally define CMOM as the task of finding map-
pings of the form < e1, e2, r, c >, where e1 and e2 can be enti-
ties or expressions comprising any number of distinct entities from
any number of ontologies. However, the applicability of m:n multi-
ontology mappings to real world scenarios is narrow, whereas 1:n
multi-ontology mappings are commonly present in biomedical on-

1 https://github.com/liseda-lab/CMOM-RS

tologies. Thus, this work focuses on 1:n CMOM, where e1 is an
entity of a single source ontology, and e2 is an expression of any
number of distinct entities from any number of target ontologies.

Even in its 1:n form, the CMOM problem is nearly untractable, as
the search space is boundless: there are no theoretical restrictions on
the arity of the target expression, which can include any number of
distinct entities of any number of ontologies, combined in any man-
ner conceivable within the expressivity limits of the OWL language
(which allows boundless nesting of expressions). Even if we restrict
the search space by placing plausible limits on the maximum arity of
the target expression (11 in existing logical definitions) and on the
range and maximum nesting of logical constructs it can include (3
types of constructs with typically 2-3 layers of nesting in existing
logical definitions) the number of combinations is still astronomical.
To reduce the complexity of the problem, we focus our effort on iden-
tifying only the mapped entities, as has been proposed for pairwise
complex matching [30].

3 Related Work

The field of ontology matching is dominated by algorithms and tools
for tackling the simple matching problems. The most successful
among these tools rely on rule-based algorithms primarily based on
the lexical component of ontologies (i.e., string matching algorithms)
while also contemplating the structural component and exploiting
sources of background knowledge [7, 16].

Efforts at tackling complex matching in a pairwise setting are
relatively few, and can be divided into [28]: lexical-based strate-
gies, which rely on finding partial lexical overlaps between entities;
and instance-based strategies, which rely on pattern analysis of the
classes and properties associated with instances shared between two
ontologies. The latter strategies are more robust than the former, as
they depend on the usage of the ontologies rather than their terminol-
ogy, and thus are not affected by terminological differences between
ontologies. However, they are limited to tackling problems for which
shared instances exist, which largely precludes their applicability to
the CMOM scenario, where the ontologies to integrate are typically
from related but disjoint domains.

The only notable effort at tackling CMOM is, to the best of our
knowledge, the work of Oliveira et al. [22], who adapted Agreement-
MakerLight [7] to finds ternary mappings (between one source and
two target ontologies) of specific patterns, through a lexical-based
strategy enhanced by a word stemmer. It should be noted that their
approach was restricted to the simplest case within the CMOM sce-
nario. To date, no strategy has been proposed to tackle CMOM with
no restrictions on the arity of the mappings.

The recent emergence of LLMs has not gone unnoticed in ontol-
ogy matching, as their applicability to a field that is largely based
on lexical strategies is readily apparent. As of the latest edition of
the Bio-ML track2 of the Ontology Alignment Evaluation Initia-
tive3, five systems reported the use of LLMs to tackle simple on-
tology matching tasks: AgreementMakerDeep [29], BERTMap [13],
Matcha-DL [8], OLala [15], and SORBETMatcher [10]. All five sys-
tems rely on the cosine similarity between the LLM embedding rep-
resentations of the labels/synonyms to predict mappings, and except
for OLala, all combine their LLM-based strategy with string match-
ing. OLala and Matcha-DL also differ from the other three systems in
that they do not perform fine-tuning based on the ontology corpora.

2 https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/2023/index.html
3 https://oaei.ontologymatching.org/2023/



Figure 1. Overview of CMOM-RS, our approach for Complex Multi-ontology Ontology Matching. One source ontology and a set of target ontologies serve
as input to two strategies, lexical and LLM, that produce candidate mappings. These are then aggregated and filtered to obtain the final alignment.

To date, no LLM-based strategy has been proposed for CMOM or
even for the simpler pairwise complex ontology matching.

4 Methods
4.1 Overview

Our proposed approach, CMOM-RS, aims to find complex multi-
ontology mappings of the form < es, {et1 , ..., etm},≡, c >, where
S is a source ontology with es ∈ S being the source entities,
et ∈ {T1, ..., Tn} are the target entities present in a set of n target
ontologies with n ≥1, mappings are of cardinality 1 : mwithm ≥2,
and c the confidence score. It is composed of several steps: (1) pre-
processing, whereby the ontologies vocabularies are extracted and
processed for further use; (2) matching, based on two complemen-
tary candidate mapping generation approaches (one lexical and one
that explores LLM representations of entities); (3) aggregation and
filtering, where candidate mappings are selected to compose a final
alignment. A general overview of the approach is shown in Figure 1.
The reasoning behind exploring two candidate mapping generation
approaches is to explore in tandem the complementarity between a
precision-oriented approach (lexical) and a recall-oriented approach
(LLM).

4.2 Pre-processing

Both the lexical and LLM-based matching algorithms rely on the vo-
cabulary component of the ontologies. The first step in our approach
is to extract the set of labels from the S into a source vocabulary
NS , and the set of labels from {T1, ..., Tn} into a unified target vo-
cabulary NT . Each label, hereafter name, is associated to its original
class, as well as with a confidence score. Leveraging on the fact that
many ontologies define multiple labels for the same entity, and that
some even define different types of synonyms4, the pre-processing
4 oboInOwl:hasRelatedSynonym, oboInOwl:hasExactSynonym,

oboInOwl:hasBroadSynonym, and oboInOwl:hasNarrowSynonym

approach assigns a confidence score that reflects the semantics of the
label property (higher for local names and lower for synonyms) and
also corrects for the frequency of the label properties (see more de-
tails in Appendix section 8.15).

4.3 Lexical Candidate Generation

The generation of lexical candidates uses the ontologies’ vocabular-
ies as the basis for its strategy. For each name in NS , a filtered target
vocabulary is generated by filteringNT to remove any names that do
not share at least one word with the source name. Then a recursive
function is applied to find all possible combinations of target names
that do not overlap with each other and afford full coverage of the
source class name (see Algorithm 1 in the Appendix). Each of these
combinations corresponds to a candidate mapping. Since candidates
are identified through names, each source entity may have multiple
names, and there may be multiple valid target combinations, mean-
ing multiple candidates (at the name level) correspond to the same
mapping (at the entity level). The aggregation of these candidates is
conducted in step (3).

The confidence score of each candidate mapping M is calculated
as the product of the confidence of each target name ntj present in it
(see Equation 1).

score =

n∏
j=1

conf(ntj ) (1)

4.4 Large Language Model-based candidate
generation

The LLM-based candidate generation is the core of our proposed
approach. It also relies on the ontologies’ vocabularies but explores

5 Appendix: https://github.com/liseda-lab/CMOM-RS



latent representations generated by encoder language models to cap-
ture the distributional semantics of the entity names through geo-
metric operations: vector subtraction and cosine similarity (see Al-
gorithm 2 in the Appendix). Unlike the lexical candidate generation,
which is able to generate multiple candidates for the same source
entity name, the LLM-based candidate generation aims to find the
best set of target names to compose a mapping for a source class
name s (FIND BEST MAPPING(s) in Algorithm 2). It relies on a re-
cursive approach that finds the most similar target name embedding
to the source embedding, updates the source embedding by subtract-
ing the target embedding from it, and recursively finds the next most
similar target embedding until the cosine similarity between the two
embeddings is lower than the input parameter α (Figure 2). At each
iteration, the most similar target name found is added to the mapping.

Figure 2. Visualisation of the first two steps of the construction of a
complex mapping in a 2D space using a geometric operation.

More formally, let s be the source name embedding, then the best
mapping for s can be found following Equations 2.

map(s) =

{
M =M ∪ tmax if cos(s, tmax) < α

map(s− tmax) if cos(s, tmax) ≥ α
(2)

where M is the set of target names selected to compose the best
mapping, s−tmax corresponds to subtracting the vectors s and tmax

is the embedding for the most similar target name, computed by max-
imizing the cosine similarity between the source name embedding
and the target names embeddings ti (see Equation 3).

tmax = argmax
ti

cos(s, ti) (3)

The inspiration for the use of subtraction is the intuition that a
composition of target vectors would approximate the source vector6.

The confidence score for the LLM-based candidates is calculated
as the cosine similarity between the source name embedding s and
the sum of the target name embeddings tj used in the candidate map-
ping (see Equation 4).

score = cos(s,
n∑

j=1

tj) (4)

6 This approach is reminiscent of the vector operations popularized by
word2vec that were later shown to only work on a few selected cases, but
which generalizes well in your task.

4.5 Aggregation and Filtering

In order to aggregate both sets of candidates into a single alignment
and ensure a cardinality of approximately 1:1, we employ a greedy
heuristic to select mappings sorted by descending confidence score
as long as they do not conflict with already selected mappings, to pro-
duce a (near) 1-to-1 alignment, since tied mappings are all returned
instead of choosing arbitrarily between them. This approach follows
the paradigm proposed in [7].

Table 1. Frequency of usage of unique entities in each target ontology in
the logical definitions of the three source ontologies and number of total

mappings extracted

Source ontologies
Target ontologies HP MP WBP

ChEBI [12] 219 172 110
CL [3] 82 363 5
GO [2] 237 834 305
PATO [9] 308 369 103
UBERON [21] 1154 2093 1
WBbt [18] - - 136

Total mappings 5447 9311 869

5 Experimental Design
5.1 Implementation

CMOM-RS was implemented using a pre-trained Sentence-BERT
model [24]7 that used a self-supervised contrastive learning objec-
tive that makes it especially appropriate for tasks such as sentence
similarity, and therefore well-suited to ontology alignment tasks fo-
cused on vocabulary similarity. Other similar pre-trained models can
be employed.

Although our reference logical definitions use both classes and
properties, the properties are highly repetitive and they offer little
added value to the construct—looking at examples such as part of
or characteristic of —since they are disconnected from the definition
of the source entity. Moreover, a human curator could effortlessly
compose the expression from a set of target entities. Due to this, our
approach is focused on finding the target entities involved in the com-
plex mappings and not on finalizing a complete construct.

5.2 Ontologies and Reference Alignments

We evaluated our approach on three CMOM tasks extracted from the
biomedical domain. These tasks were selected since they are, to the
best of our knowledge, the only tasks for which a partial reference
alignment can be extracted to evaluate CMOM-RS. Each of these
tasks is focused on a source ontology: the Human Phenotype Ontol-
ogy (HP), the Mammalian Phenotype Ontology (MP), and the Worm
Phenotype Ontology (WBP). Each of these ontologies encodes logi-
cal definitions that cover a diverse set of ontologies. To build the ref-
erence alignments (see Table 1) for both the HP and MP task, we em-
ployed the following target ontologies: the Cell Ontology (CL), the
Chemical Entities of Biological Interest (ChEBI), the Gene Ontol-
ogy (GO), the Phenotype and Trait Ontology (PATO), and the Uber
Anatomy Ontology (UBERON). For the WBP task, the target on-
tologies were: ChEBI, GO, PATO, and the C.elegans Gross Anatomy
Ontology (WBbt). For a more complete analysis of the logical defi-
nitions see section 8.2 in the Appendix.

7 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2



5.3 Experiments

Our experimental design includes several experiments. We gener-
ated partial alignments to evaluate against the partial reference align-
ments, where mappings are only created for the source entities
present in the reference. We also generated full alignments where
all source ontology entities can be matched. A set of domain experts
manually evaluated a sub-sampling of a full alignment. In addition,
we also conducted an ablation study to assess the influence of the
different candidate generation components.

5.4 Reference-based Evaluation Metrics

Considering the novelty of the CMOM task, we developed a novel
approach to evaluate complex multi-ontology mappings that extends
existing paradigms in both the semantic evaluation of ontology align-
ments [5] and the evaluation of complex alignments [31].

A candidate mapping for a given source entity is considered fully
correct if the target entities in the reference mapping for that source
entity correspond exactly to the target entities in the candidate map-
ping. Our evaluation approach accounts for two types of partial cor-
rectness: (1) semantic correctness, where semantically similar enti-
ties are still considered a positive contribution to the correctness of
the mapping; and (2) completeness, where the presence or absence of
a target entity in the candidate mapping versus the reference mapping
penalizes precision or recall respectively.

Regarding semantic correctness, the relaxed precision and relaxed
recall of each mapping are calculated according to Equations 5 and 6
respectively.

relaxed prec(ei) =


1 if ei ≤ erj
0.5 if ei > erj

0 otherwise

(5)

relaxed rec(ei) =


1 if ei ≥ erj
0.5 if ei < erj

0 otherwise

(6)

where ei and erj , stand for a predicted entity and a reference en-
tity, respectively, and > and < stand for direct sub- or super-classes.

Regarding completeness, the precision of a mapping is then com-
puted as the ratio between the sum of the relaxed precision values of

each target entity in the predicted mapping and the number of target
entities in the candidate mapping (Equation 7).

prec(mi) =

∑n
i=1 relaxed precision(ei)

n
(7)

where n stands for the number of target entities in the candidate
mapping, and mi stands for a candidate mapping composed of enti-
ties {e1, .., en}.

Mapping recall is calculated using the ratio between the sum of the
relaxed recall values of each individual target entity and the number
of target entities in the reference mapping (Equation 8).

rec(mi) =

∑n
i=1 relaxed recall(ei)

r
(8)

where r stands for the number of target entities in the reference map-
ping.

A subsequent aggregation to evaluate the full alignment was per-
formed for both metrics. Alignment precision is calculated as the
ratio between the sum of all mapping precision values and the total
number of mappings in the alignment (Equation 9).

alignment precision =

∑n
i=1 prec(mi)

|M | (9)

where prec(mi) stands for the value of precision of a mapping
and M for the total number of mappings in the final alignment.

Similarly, the alignment recall is calculated as the ratio between
the sum of all mapping recall values and the total number of map-
pings in the reference alignment (Equation 10).

alignment recall =
∑n

i=1 rec(mi)

|Mr|
(10)

where rec(mi) stands for the value of recall of a mapping andMr

stands for the total number of mappings in the reference alignment.
In addition to semantic precision, recall and F1-score, we also

classified each mapping according to its level of correctness and
completeness into mutually exclusive and ordered categories:(i) cor-
rect (predicted mapping and reference mapping match in all entities);
(ii) contains (the predicted mapping contains the reference mapping);
(iii) contained (the predicted mapping is contained within the refer-
ence mapping); (iv) overlap (some entities are shared between the
two mappings). Each of these four categories was extended to ac-
count for semantic correctness (marked with *). Considering the

Table 2. Example provided to evaluators for expert-based evaluation of the LLM mappings.

Source name Source synonyms Target
name

Target synonyms Evaluation
per target

Complete? Confidence
(1-4)

abnormal
basophil
morphology
(HP_0001912)

abnormality of
basophils

basophil
(CL_0000767)

basophilic leucocyte, basophilic leukocyte, polymor-
phonuclear leucocyte, polymorphonuclear leukocyte

correct no 4

morphology
(CL_0000051)

- correct

abnormal
basophil
morphology
(HP_0001912)

abnormality of
basophils

abnormal
(PATO_0000460)

atypical; atypia; aberrant; defective correct
yes 4

basophil
(CL_0000767)

basophilic leucocyte, basophilic leukocyte, polymor-
phonuclear leucocyte, polymorphonuclear leukocyte

correct

structure
(PATO_0000141)

conformation, relational structural quality related

abnormal
basophil
morphology
(HP_0001912)

abnormality of
basophils

abnormal
(PATO_0000460)

atypical; atypia; aberrant; defective correct
yes 4

basophil
(CL_0000767)

basophilic leucocyte, basophilic leukocyte, polymor-
phonuclear leucocyte, polymorphonuclear leukocyte

correct

morphology
(PATO_0000051)

- correct



inherent complexity of the CMOM task and that OM is typically
followed by user validation to ensure the correctness of the align-
ment [4], these categories allow us to delve into the effort required to
correct the candidate mappings.

5.5 Expert-based Evaluation Approach

Since the reference alignments are only partial—they only provide
mappings for a subset of source classes—we recruited three domain
experts8 (7-20 years of experience in the biomedical field) to assess
the validity of the top 50 HP mappings by confidence score generated
by the LLM-based approach. The mappings were presented to the ex-
perts in a table format (example in Table 2), and they were asked to
evaluate both target entity correctness and full mapping complete-
ness.

Regarding target entity correctness, each entity could be evaluated
according to:

correctness(ei, er) =


1 if ei ⊃ er (correct)

0.5 if ei ∼ er (related)

0 if ei 6⊃ er (incorrect)

(11)

Mappings whose target entities are correct or related can also be
evaluated as complete or incomplete, in order to assess whether the
set of target entities achieves full coverage of the source entity’s
meaning. We approximate incompleteness to n + 1, where n is the
number of target entities in the candidate mapping:

completeness(Et, er) =

{
n if Et,≡ er (complete)

n+ 1 if Et ⊃ er (incomplete)

(12)
where Et is the set of target entities in a candidate mapping m

(i.e., {et1 ,..., etn}).
These scores can be used to calculate manual precision and recall

values for each mapping. Precision is calculated as the ratio between
the sum of the correctness scores for each target entity and the num-
ber of target entities in the candidate mapping n. For recall, we con-
sidered the ratio between the sum of the correctness scores for each
target entity and the completeness score of the candidate mapping
(Equations 13 and 14 in the Appendix). The alignment evaluation is
then computed using Equations 9 and 10.

Expert evaluators were free to search for any additional informa-
tion they deemed necessary (e.g., ontology browsers) to conduct the
evaluation and were asked to grade their confidence in each mapping
evaluation on a scale from 1 to 4.
8 who are not authors of this paper

The Cohen’s κ coefficient was calculated to assess the agreement
between experts for both metrics measured. We employed a quadrat-
ically weighted κ to account for the ordinal aspect of the scale for
correctness, i.e., ’correct’ and ’related’ evaluations are considered to
agree more than ’correct’ and ’incorrect’ ones.

Table 3. Results for the reference-based evaluation.

Semantic
Precision

Semantic
Recall

Semantic
F1-score

HP
CMOM-RS w/o LLM 0.620 0.392 0.481
CMOM-RS w/o lexical 0.472 0.466 0.469
CMOM-RS 0.510 0.579 0.543

MP
CMOM-RS w/o LLM 0.760 0.643 0.696
CMOM-RS w/o lexical 0.559 0.511 0.534
CMOM-RS 0.651 0.722 0.685

WBP
CMOM-RS w/o LLM 0.617 0.391 0.479
CMOM-RS w/o lexical 0.407 0.456 0.430
CMOM-RS 0.461 0.520 0.489

6 Results and Discussion
Tables 3 and 4 present the results of our reference-based evaluation.
Due to the lack of established baselines in CMOM, we compared our
CMOM-RS approach with two ablated variants: without the lexical
candidate generation (only LLM) and without the LLM-based can-
didate generation (only lexical, which can be seen as an improved
version of the state-of-the-art method established by [22]). Table 3
shows that the complete CMOM-RS approach achieves the best se-
mantic recall for all tasks and the best F1-score for HP and WBP.
The ablated version without the LLM-based candidate generation
achieves the best F1-score for MP due to its higher precision.

The higher precision of the lexical candidate generation in com-
parison with the LLM-based candidate generation can be explained
by the fact that in the former we enforce the source entity to be the
disjoint union of the target entities syntactically, whereas in the latter
we can only approximate this criterion in the semantic space con-
veyed by the LLM embeddings. As the ontologies involved are of
closely related domains, the syntactical identity of the lexical candi-
date generation translates well to semantic identity, whereas the se-
mantic latitude afforded by the LLM embeddings leads to less precise
mappings. On the other hand, the LLM-based candidate generation
has a higher recall than the lexical candidate generation in two of the
three tasks, and contributes substantially to the recall of the complete
strategy in all three, as it is able to find (partially) correct mappings in
cases where there is semantic but not syntactical alignment between
the entities.

Table 4. Results for the reference-based evaluation of mapping correctness and completeness, according to the categories of correct, contains, contained and
overlap. Categories marked with * aggregate mappings that are constructed using a direct sub- or super-class.

Mappings Source
entities

Target
entities

Correct Correct* Contains Contains* Contained Contained* Overlap Overlap* Total

HP
CMOM-RS w/o LLM 2967 2596 2947 710 63 140 248 71 31 1273 195 2731
CMOM-RS w/o lexical 5857 5381 5825 609 162 46 40 513 62 2195 445 4072
CMOM-RS 5987 5406 5967 826 105 156 257 393 59 2366 438 4600

MP
CMOM-RS w/o LLM 7521 6867 7481 2328 151 678 1025 419 49 2199 423 7272
CMOM-RS w/o lexical 9908 9223 9860 1677 170 25 3 1329 152 3868 407 7631
CMOM-RS 10122 9282 10080 2441 171 689 1027 543 80 3131 598 8680

WBP
CMOM-RS w/o LLM 542 480 542 53 45 100 16 13 4 206 26 463
CMOM-RS w/o lexical 993 862 993 48 36 4 2 20 6 522 57 695
CMOM-RS 962 863 962 56 47 101 17 14 4 401 48 688



Table 5. Statistics for both the reference and non-reference alignments, as well coverage against the total classes in the ontology.

Reference Full

Classes Mappings Source entities Mappings Source entities Coverage

HP

Original LDs

16601

5477 5447 - - 36.99%
CMOM-RS w/o LLM 2967 2596 3905 3468 25.06%
CMOM-RS w/o lexical 5857 5381 17087 15506 97.58%
CMOM-RS 5987 5406 17197 15538 97.77%

MP

Original LDs

14513

9311 9311 - - 69.83%
CMOM-RS w/o LLM 7521 6867 8632 7792 59.37%
CMOM-RS w/o lexical 9908 9223 14469 13482 98.57%
CMOM-RS 10122 9282 14806 13565 99.15%

MP

Original LDs

2701

869 869 - - 35.69%
CMOM-RS w/o LLM 542 480 977 862 35.43%
CMOM-RS w/o lexical 993 862 2893 2562 98.37%
CMOM-RS 962 863 2866 2571 98.70%

Table 4 shows that our approach is able to generate more mappings
than either ablated version, but also more fully correct mappings,
demonstrating that aggregating both candidate generation methods
is beneficial. It is also interesting to note that 8% to 28% of the map-
pings found by CMOM-RS are fully correct, and between 61 and
65% are partially correct, amounting to a relatively low effort in a
manual validation scenario.

As any evaluation using a partial reference alignment is, by defi-
nition, incomplete, Table 5 shows the global statistics of not only the
partial alignments (i.e., only for source classes with logical defini-
tions) but also the full alignments generated by CMOM-RS and its
two ablation variants. The results show that CMOM-RS is close to
full coverage of all three source ontologies, indicating it can be used
to find logical definitions for several thousand classes that currently
lack them.

While in principle, the performance of CMOM-RS could be ex-
trapolated from the partial to the full alignments, we also performed
a manual evaluation of a sample of 50 mappings for source classes
with no logical definitions. The evaluators classified each target as
correct, related or incorrect—equal to 1, 0.5, and 0 respectively—
and each mapping as complete or incomplete. The aggregated results
can be seen in Table 6.

Table 6. Manual evaluation results.

Correctness
Cohen’s k

Completeness
Cohen’s k

Precision Recall

0.705 0.592 0.880 0.851

The agreement of the evaluators responses is presented as the Co-
hen’s kappa coefficient, calculated as the average of the coefficient
between all evaluator pairs. The responses indicate that evaluators
agreed more often on the evaluation of the targets than whether or
not the mapping was complete, with target classification results be-
ing ’substantial’ and mapping completeness being ’moderate’ [17].
77% of the mappings were evaluated with the maximum confidence
score by the experts.

The accuracy of the manually evaluated mappings is high, with an
average precision of 88% and an average recall of 85%, meaning the
mappings were fairly close to correct according to the experts. Al-
though these scores are higher than the semantic precision and recall
scores observed for the reference-based evaluation, the two sets of
scores are not directly comparable.

Mappings that were classified as complete and correct by all eval-
uators will be made available as potential new reference mappings.

7 Conclusions

This work presented CMOM-RS, a novel approach to CMOM predi-
cated on the principle that, in 1:n mappings, the source entity should
be semantically the disjoint union of the entities in the target ex-
pression. CMOM-RS combines two recursive strategies for candi-
date mapping generation that approximate this criterion: a strategy
based on LLMs that exploits the semantic space conveyed by em-
beddings through geometric operations; and a lexical strategy that
enforces disjoint union at the syntactical level (which in ontologies
of related domains typically translates well to the semantic level).

Our reference-based evaluation showed that the lexical strategy is,
as expected, more precise than the LLM-based strategy, as the match-
ing syntax is a stricter requirement than the matching semantics con-
veyed by the embeddings space. Despite being less precise, the LLM-
based strategy was able to find fully correct mappings in comparable
number, while achieving near-complete coverage of the source on-
tologies, whereas the lexical strategy was severely restricted in cov-
erage. These results demonstrate the effectiveness of our LLM candi-
date generation algorithm, validating our premise that the geometric
properties of the embeddings space can be harnessed to find compo-
sitional semantic identity recursively.

Overall, our CMOM-RS approach produced the highest coverage
and semantic recall in all tasks and the highest F-measure in two of
the three tasks, demonstrating the value in combining the lexical and
LLM strategies. Assuming the results of the reference-based evalu-
ation can be extrapolated to the full source ontologies (rather than
restricted to sources in the reference alignment), CMOM-RS can be
used to expand the logical definitions currently available in these on-
tologies to cover nearly all their classes, greatly reducing the work-
load for ontologists. This is further reinforced by the results of our
manual expert-based evaluation, which demonstrated the accuracy of
the mappings produced by CMOM-RS for source classes not in the
reference alignments.

An additional contribution of our work is the novel CMOM-RS
mappings classified as correct by all experts, which we will suggest
as new logical definitions to the community. Moreover, we envision
that the partial reference alignments we generated and the semantic
evaluation metrics we proposed for evaluating CMOM can become
benchmarks to help propel research in this challenging task.
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