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Abstract. A rich biomedical knowledge graph can support the multi-
domain data integration necessary for the application of Artificial Intel-
ligence models in personalised medicine. Constructing such a knowledge
graph from already available biomedical ontologies relies on ontology
matching, however, current ontology matching systems are geared to-
wards the alignment of pairs of ontologies of the same domain one at
a time. This approach, when applied to a multi-domain problem such
as personalised medicine in an all vs. all fashion, poses scalability issues
while also ignoring the particularities of the multi-domain aspect.
In this work we evaluate a state-of-the-art ontology matching system,
AgreementMakerLight, in the task of building a network of 28 integrated
ontologies to construct a knowledge graph for Explainable AI in person-
alised oncology, highlighting its shortcomings. To address them, we have
developed a novel holistic ontology alignment strategy building on Agree-
mentMakerLight that clusters ontologies based on their semantic overlap
measured by fast matching techniques with a high degree of confidence,
and then applies more sophisticated matching techniques within each
cluster. We implemented two within cluster alignment strategies, one
based on pairwise alignment and another on incremental alignment.
The within-cluster incremental alignment reduced alignment time by
80% when compared with within-cluster pairwise alignment, achieving
88% coverage of its mappings. Compared to an all vs. all pairwise ap-
proach, holistic approaches reduce total running time by up to 60%.
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1 Introduction

Data-centric approaches like personalized medicine have taken the forefront in
biomedical research, driven by the increasing availability of biomedical data.
Artificial Intelligence (AI) is positioned as a promising solution to handle these
large heterogeneous datasets composed of various types of data (e.g. genomic,
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clinical and image data). However, the evolution of AI has favored black-box
approaches that, while effective, do not foster user trust or understanding—
aspects which are critical in personalized medicine, as it often involves life-or-
death decisions.

To address this limitation of black-box AI approaches, there have been re-
newed efforts towards developing explanatory mechanisms for AI [4]. Frequent
among the approaches proposed for explainable AI (XAI) is the use of Knowl-
edge Graphs (KG), which comprehensively encode the knowledge in a domain,
and can be leveraged to support user-friendly explanations when used in concert
with AI methods [16, 3]. The challenge is that, the more complex the domain, the
more complex and comprehensive will be the KG needed to support XAI in that
domain, and few domains approach the complexity of personalized medicine.

The area of personalized medicine deals with knowledge stemming from
many specific subdomains that interact in various ways, ranging from molecules
(e.g. chemical compounds, genes, and proteins) to clinical and demographic fac-
tors[10]. Accordingly, ontological representations of these domains have been the
subject of intense investigation. In BioPortal[19], an online repository of biomed-
ical ontologies, there are currently more than 800 ontologies (totalling almost 9
million classes). Some of these ontologies are designed and developed as com-
munity efforts that function as community-approved representations of reality,
while others are developed by single research teams and serve a more specific and
localized purpose. Thus, rather than build a KG from the ground up, we posit
that one can harness the wealth of publicly available knowledge through ontology
matching to build the ontological layer of a KG for personalized medicine[23].

The KATY project1 aims to develop an AI-empowered personalized medicine
system to assist medical professionals and researchers in diagnosing patients
more accurately, making predictions about their future health, and recommend-
ing better treatments. KATY will tackle the challenge of translating AI-based
suggestions into practical decision-making processes and treatment strategies
that clinicians can understand and trust by combining high performing black-
box machine learning approaches with a comprehensive knowledge graph. The
KG will serve as input to AI methods (e.g. directly, through embeddings) as
well as encode the AI outcomes themselves to create a shared semantic space
for data, scientific context and predictions capable of supporting explanation
methods[31].

In a preliminary step, a careful selection of ontologies that span the domain
of interest was conducted, as the goal is to reconcile the ontologies into a sin-
gle cohesive knowledge model, through ontology matching techniques, to form
the backbone of the knowledge graph. This resulted in a catalogue of relevant
ontologies and controlled vocabularies which comprises 78 ontologies, of which
16 are referenced directly from the public data resources, and the remaining
62 were selected from our survey of BioPortal. Of these 78 ontologies, 28 were
considered core to the KATY project, and the remaining 50 were considered

1 http://katy-project.eu/



Matching Multiple Ontologies to Build a KG for Personalized Medicine 3

potentially relevant, to be used only if the coverage of the 28 core ontologies is
found insufficient when integrating datasets into the KATY knowledge graph.

This paper describes the process of matching the 28 core ontologies to build
an integrated semantic backbone for the knowledge graph, focusing on finding
simple equivalence mappings between pairs of entities belonging to the set of
ontologies. We further detail the requirements for ontology matching in this ap-
plication, discuss the challenges found when applying a state of the art ontology
matching system, and present a novel approach for holistic ontology matching
that builds on an existing system, AML[9], addressing the requirements and
challenges in biomedical ontology holistic matching. We performed a series of
experiments to demonstrate the impact of the holistic approach and measure
improvements over the baseline state of the art system.

2 Challenges in holistic biomedical ontology matching

Ontology matching (or alignment) is the process of establishing mappings (or
correspondences) relating the entities (classes, properties or individuals) of two
ontologies with overlapping domains. A mapping is usually represented as a
tuple < e1, e2, r, c > where e1 and e2 are entities of the two ontologies, r is the
semantic relation between them (e.g. ≡, ≥, ≤, ⊥) and optionally c is a confidence
score indicating how certain about the mapping is the person or algorithm who
produced it [7]. A collection of mappings between two ontologies is called an
alignment, and is typically stored in a file external to the ontologies, in the
Alignment RDF format2 that is the de facto standard in the field.

Matching biomedical ontologies is a challenging task on its own [8], both
in terms of computational resources (as they are typically quite large) and
in terms of the richness and complexity of the information available to match
them, including a substantial lexical component where homonyms and synonyms
abound [25], the presence of cross-references that establish correspondences but
with no formal semantics, and the presence of logical definitions which corre-
spond to complex ontology mappings [15, 20].

Holistic ontology matching is an extension of the pairwise ontology matching
process for a set Ω = {O1, ..., ON} of ontologies with N ≥ 2, where a final
alignment A is produced between all of them [18]. The basic approach to do
this consists of uniting the alignments between all pairwise combinations of the
ontologies to align, which is evidently a sub-optimal strategy computationally
as in implies performing a quadratic number of ontology alignment steps.

This holistic matching challenge has been recognized by the ontology match-
ing, schema matching and linked data communities [22, 27], with strategies to ad-
dress it being usually based on exploring two different concepts: partitioning the
search space in groups within which pairwise alignment is employed [11] or ap-
plying incremental matching according to a predefined order [30, 13]. Gruetze et
al. [11] proposed grouping of linked data concepts by topic using Wikipedia and

2 https://moex.gitlabpages.inria.fr/alignapi/format.html
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then running an alignments only between concepts in the same group. Saleem et
al. [30] developed a method to incrementally create an integrated schema encom-
passing all input schema trees, by first clustering the nodes based on linguistic
label similarity and then applying a tree mining technique. Hertling et al. [13]
analyzed the impact of the ordering of ontologies in linear executions of align-
ments to produce an alignment of multiple ontologies and demonstrated that
near-optimal results can be achieved with linear efforts. Orthogonally to these
works, Megdiche et al. [18] developed an approach based on linear programming
that is able to find a stable alignment between multiple ontologies independently
of the order of alignment tasks.

Building an integrated KG containing multiple ontologies requires, not only
holistic matching to produce an external alignment between them, but actually
merging the ontologies. Osman et al. [21] categorized ontology merging works
according to whether they are applied after all pairwise alignments are found [1,
5] or integrated into an incremental matching approach starting from a seed
ontology [2, 32].

Thus, aligning and integrating the 28 selected KATY ontologies to form
the backbone of a KG for precision oncology requires tackling challenges at
these three levels: biomedical ontology matching, holistic ontology matching, and
holistic ontology integration. Moreover, it also requires addressing requirements
in terms of quality, coverage and scalability.

Ensuring high quality mappings between the ontologies is a strong re-
quirement for a system that must work with a minimal human involvement due
to the size of the task, but has a high-stakes target application in healthcare.
Alignments need to achieve both high precision and high recall, since both types
of errors can compromise XAI approaches, either by proposing wrong explana-
tions or not finding suitable ones.

Achieving a sufficient coverage of all domains in personalized oncology is
mandatory to make sure that all data required to train the AI models is well-
described according to domain ontologies in a way that supports building expla-
nations. The integration of molecular and clinical data is the key to personalized
medicine, which seeks to understand the play between genotype, phenotype and
environment and how it bears on the effectiveness of treatments or the prognosis
of diseases. This aspect requires that not only the KG covers multiple domains
but that it also includes sufficient granularity.

Finally, scalability must also be considered. Matching 28 ontologies means
that there are nearly 1.2 million classes plus their associated properties and
individuals that need to be processed. Moreover, since ontologies evolve and
new relevant data may be added to the KG, the time required to build the
network of ontologies should not be a limiting factor in updating the system.

To build a high quality network of biomedical ontologies we need to strike
a balance between quality, coverage and scalability. Filtering out lower quality
mappings may result in lower coverage, higher coverage requires the ability to
align more ontologies, but more sophisticated ontology matching algorithms that
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are able to produce higher quality and higher coverage alignments are harder to
scale.

3 Enhancing AML for holistic ontology matching

3.1 AgreementMakerLight

AgreementMakerLight (AML) is an automated ontology matching system predi-
cated on the design principles of scalability and extensibility [9]. It has been one
of the best performing systems in the yearly Ontology Alignment Evaluation
Initiative (OAEI) for the past eight years, excelling particularly in tracks involv-
ing biomedical ontologies [26]. This is thanks to features such as the weighting
system it uses to differentiate labels and synonyms enabling fine-grained lexical
matching, or its use of cross-references and logical definitions (which are singular
to the biomedical domain) [8]. Given the stellar performance of AML’s matching
algorithms in biomedical ontology matching, using it as the baseline matching
system is an added guarantee of the quality of the produced mappings.

Of note, AML’s lexical matching, cross-reference matching and logical-definition
matching algorithms are all implemented using a hash-search strategy that means
they run in linear time [8], and therefore can be used for profiling the suite of
ontologies to match with regard to their overlap, in a holistic matching scenario.

However, like all matching systems participating in the OAEI, AML is only
prepared to perform pairwise matching of ontologies, and produces ontology
alignments that are external to the ontologies, in the Alignment RDF format.
It doesn’t include the functionality of integrating ontologies through their align-
ment, which would be required to build a KG automatically through ontology
matching. Indeed, building a KG automatically through the alignment of multi-
ple ontologies is beyond the state of the art in ontology matching evidenced by
the OAEI.

3.2 Extensions to AML

Setting aside the possibility of matching multiple ontologies simultaneously, and
contemplating only the scenarios of pairwise matching or incremental matching,
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the only core functionality missing from AML for holistic ontology matching is
the ability to merge two ontologies through their alignment, with a simple merge,
as defined by [21].

We extended AML by implementing the functionality of converting an RDF
alignment into an OWL ontology that imports the aligned ontologies and adds
the axioms corresponding to the mappings: equivalentClass or subClass for equiv-
alence or subsumption mappings between classes; equivalentProperty or subProp-
erty for equivalence or subsumption mappings between properties; and sameIn-
dividual axioms for equivalence mappings between individuals. To enable the
pairwise strategy, we also implemented the functionality of merging two or more
ontologies (or OWL alignments) into a single ontology, which will be necessary
to combine multiple pairwise alignments into a single KG. Furthermore, for both
the pairwise and the incremental strategies, we implemented the functionality
of merging an ontology with all its imports, as it would be unwieldy to have a
knowledge graph with OWL import statements for several local OWL ontology
and/or alignment files.

3.3 Implementing holistic matching strategies using AML

Using AML and the extensions detailed above, we implemented two distinct
holistic matching strategies: pairwise and incremental, which can be preceded
by a clustering step and applied within-cluster, or applied globally to the full
suite of ontologies to match. Since the global algorithms are the same as the
within-clustering algorithms in the particular case where the number of clus-
ters is 1, we present only the more general within-cluster algorithms. The use
of clustering is motivated by the fact that there are multiple near-orthogonal
sub-domains in the biomedical domain, and we can isolate groups of ontologies
from each sub-domain, for which performing sophisticated ontology matching
against ontologies of other sub-domains would likely produce more erroneous
than correct mappings.

To enable clustering, we perform an initial anchoring step for all pairwise
combinations of ontologies using linear-time matching algorithms, whereby we
calculate the fraction of classes of the smallest ontology of each pair that have
the same URI, direct cross-references, shared cross-references, overlapping logical
definitions, or equivalent labels or synonyms to classes in the largest ontology of
the pair. This anchoring is substantially quicker than performing a full pairwise
matching strategy, and has the objective of determining the overlap between
all ontologies with a high degree of confidence. From the anchoring results, we
build an affinity matrix indicating the semantic overlap between each pair of
ontologies, which we use as input for spectral clustering, to define groups of
ontologies with a higher level of overlap and therefore likely within the same
sub-domain.

In the within-Cluster Pairwise Alignment (CPA) strategy, each pairwise com-
bination of the ontologies in each cluster is matched then merged, then all the



Matching Multiple Ontologies to Build a KG for Personalized Medicine 7

merged ontology pairs of a cluster are combined and merged into a KG3, and
finally the KGs of each cluster are merged into a final single KG using the an-
choring algorithm, as detailed in Algorithm 1.

Algorithm 1 Within-cluster pairwise alignment (CPA)

input: C->O (map of clusters to ontologies)

init: CM ->OM = new map of cluster to ontologies

init: KG = new list of ontologies

init: OK = new list of ontologies

for Ci in C:

Oi = C.get(Ci)

for j = 0 to Oi.length -1:

for k in j+1 to Oi.length:

A = AML.match(Oi[j],Oi[k])
O = merge(convert(A))

OMi.add(O)

CM ->OM .put(Ci,OMi)

KG[i] = OMi[0]

for j = 1 to OMi.length:

merge(KG[i],OMi[j])
for i = 0 to KG.length -1:

for j = i+1 to KG.length:

A = AML.anchor(KG[0],KG[0])
O = merge(convert(A))

OK.add(O)

init: KGF = OK[0]
for i = 1 to OK.length:

merge(KGF ,OK[i])
output: KGF

In the within-Cluster Incremental Alignment (CIA) strategy, the pair of on-
tologies within each cluster that has the greatest overlap is matched and merged,
then the resulting merged ontology is matched against the next ontology in the
cluster, and so on until all ontologies in the cluster have been matched. Then,
anchoring is performed also incrementally between the KG produced from each
cluster, to produce a final single KG. The algorithm is detailed in Algorithm 2.

In both strategies, we used AML’s automatic matching with default config-
urations, but with no ontologies used as background knowledge, and with the
alignment repair step switched off. Using ontologies as background knowledge
would be nonsensical in this setting, as any ontology that could be used effec-
tively as background knowledge source should be, in principle, included in the
suite of ontologies to match (as the goal is to build a comprehensive knowledge

3 we use KG to denote the integrated network of ontologies which constitute the
semantic backbone of the full fledged KG.
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Algorithm 2 Within-cluster incremental alignment (CIA)

input: C->O (map of clusters to sorted ontologies)

init: KG = new list of ontologies

for Ci in C:

Oi = C.get(Ci)

KG[i] = Oi[0]

for j = 1 to Oi.length:

A = AML.match(KG[i],Oi[j])
KG[i] = merge(convert(A))

init: KGF = KG[0]
for i = 1 to KG.length:

A = AML.anchor(KGF ,KG[i])
KGF = merge(convert(A))

output: KGF

graph) and therefore will be merged with the other ontologies which is effectively
equivalent to having it as a source of background knowledge. As for the choice
not to perform repair, it is predicated on our desire for completeness of the
alignment over coherence [24]. Furthermore, alignment repair algorithms take
arbitrary choices when faced with conflicting mappings to remove, so while it is
critical to ensure the final KG is coherent, this should involve human revision to
ensure the mappings removed or edited are indeed inaccurate.

4 Integrating biomedical ontologies in a personalized
oncology KG

4.1 Ontologies

The goal of our study is the integration of the 28 ontologies selected to cover
the personalized oncology domain into a single KG. These ontologies are listed
in Table 1, together with the biomedical sub-domains they cover, which total
19, from molecular biology to drug-side effects. Taken together, these ontologies
contain 1,191,785 classes, 2,634 properties and 397,535 individuals.

4.2 Alignment strategies

To integrate the 28 KATY ontologies, we compared the two holistic matching
strategies, CPA and CIA. Additionally, as a reference point, we also tested the
global pairwise alignment (GPA) strategy, which corresponds to a naive use of
the state of the art in ontology matching (and algorithmically, as detailed in
Section 3, is the same as CPA when the number of clusters is 1).

4.3 Results

The global pairwise alignment (GPA) of the 28 ontologies translated into 378
alignment runs resulting in 378 pairwise alignments with a total of more than
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Table 1: Ontologies used and their domains

Acronym Ontology Domains Classes

ACGT-
MO

Cancer Research and Manage-
ment ACGT Master Ontology

clinical feature, sample status 1769

ATC Anatomical Therapeutic Chem-
ical Classification

drug 6567

CCTOO Cancer Care: Treatment Out-
come Ontology

response to treatment, drug
screening

1133

ChEBI Chemical Entities of Biological
Interest Ontology

metabolic, drug 171058

CL Cell Ontology cellular 10984

CLO Cell Line Ontology cell line 44873

CMO Clinical Measurement Ontology clinical feature, sample status 3054

DCM DICOM Controlled Terminol-
ogy

histological images 4561

DOID Human Disease Ontology clinical feature 17642

DTO Drug Target Ontology drug target interaction 10075

EFO Experimental Factor Ontology experimental 28816

FMA Foundational Model of
Anatomy

anatomical data 78977

GENO Genotype Ontology genomic 425

GO Gene Ontology genomic, biological pathway 50713

HCPCS Healthcare Common Procedure
Coding System

clinical feature, drug sampling 7094

HGNC HUGO Gene Nomenclature genomic 32917

HP Human Phenotype Ontology biological feature 27482

ICDO International Classification of
Diseases Ontology

clinical feature 1313

LOINC Logical Observation Identifier
Names and Codes

clinical feature 268552

MONDO Mondo Disease Ontology clinical feature 43735

NCIT National Cancer Institute The-
saurus

biological feature, clinical fea-
ture

166884

OAE Ontology of Adverse Events drug side effect, response to
treatment

5762

OMIM Online Mendelian Inheritance in
Man

biological feature 97261

OPMI Ontology of Precision Medicine
and Investigation

clinical feature, clinical trial 2939

ORDO Orphanet Rare Disease Ontol-
ogy

clinical feature 14886

PDQ Physician Data Query clinical feature, drug screening 13452

PMAPP-
PMO

PMO Precision Medicine Ontol-
ogy

genomic, clinical feature, clini-
cal trial, sampling

76154

SO Sequence Ontology genomic, transcriptomic 2707
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Fig. 1: Overview of the alignment strategies

half a million mappings. The duration of the loading and matching processes4

and total number of mappings found are presented in Table 3.

The two clustering-based approaches, CPA and CIA, require ontologies to
be clustered, which involves an initial step of anchoring followed by spectral
clustering, as detailed in Section 3. The anchoring step also translated into 378
(lightweight) alignment runs resulting in a set of 378 pairwise alignments, as well
as in an affinity matrix computed based on these alignments. The duration and
total mappings found by the anchoring step are also presented in Table 3.

Figure 2 presents a heatmap representation of the semantic overlap computed
by the anchoring step. Individual heatmaps for each component of the anchoring
process are available as supplementary materials 5. A few ontologies have a high
number of direct cross-references between them or reuse classes from each other
extensively. Logical definitions are less relevant to establish the semantic overlap
between ontologies, since the majority of ontologies used does not declare them.
The Lexical Matcher is the method that is able to find more correspondences
for more ontology pairs.

The affinity matrix was then used as input to clustering with spectral clus-
tering. We tested cluster numbers between 3 and 6, and empirically selected 4
clusters which are shown in Table 2.

Table 2: Ontologies organized by cluster

Cluster Ontologies Classes

C1 NCIT, PDQ, LOINC, ChEBI, CCTOO 621079

C2 PMAPP-POM, GO, HP, ATC, FMA, CL, CLO,
OAE, ACGT-MO, ICDO, SO, HCPCS, GENO

314820

C3 CMO, OPMI 5993

C4 MONDO, ORDO, DOID, OMIM, EFO, HGNC,
DTO, DCM

249893

4 Experiments were run in a machine with 100Gb of available RAM
5 https://github.com/liseda-lab/holistic-matching-aml
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Fig. 2: Heatmap of the semantic overlap between ontologies
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We applied the CPA and CIA strategies on the four clusters. In the CPA, the
alignment tasks are run between all pairwise combinations of ontologies within
each cluster, in the same manner as the GPA strategy. This translated into 117
pairwise alignment tasks and output alignments, which were merged within each
cluster to produce 4 intermediate cluster KGs. In the CIA, only n-1 alignment
tasks are required to integrate the n ontologies in each cluster incrementally,
so 24 alignment tasks were necessary in total to produce 4 intermediate cluster
KGs. The final step of each strategy was the merging of the cluster KGs through
the anchoring algorithm to create a fully integrated KG. Again, the statistics of
the alignment processes are summarized in Table 3.

Since we employed the GPA strategy only as a reference point for the state
of the art, we did not perform the merging of the pairwise alignments into a
single KG (as it would be beyond the state of the art). Thus, the GPA runtime
is directly comparable to the sum of anchoring and within-cluster alignment run-
times for the CPA and CIA strategies. We note that, while the GPA takes more
than 31 hours to complete, anchoring+CPA takes less than 24 hours and an-
choring+CIA less than 16 hours. It is obvious that although matching times are
greatly reduced in CPA (by nearly 12 hours) and CIA (by nearly 19 hours) when
compared with GPA, the process of loading the ontologies using the OWL API
is responsible a considerable portion of the time spent in running the alignment
processes.

Table 3: Alignment results

Runtime (hh:mm) Alignment

Strategy Load Match Total Mappings Tasks

GPA 11:47 19:51 31:37 554547 378

Anchoring 11:47 01:59 13:46 427300 378

CPA 02:25 07:42 10:07 219021 117

CIA 01:05 01:05 02:10 193503 24

GPA: global pairwise alignment. CPA: within-cluster pairwise alignment.
CIA: within cluster incremental alignment.

Table 4 presents the final alignment sizes produced by each strategy6, where
for CPA and CIA, the final alignment size results in combining the within-
cluster mappings with between-cluster anchoring mappings, where the latter
contributed over 200,000 mappings for both strategies. CPA produced a final
KG that is 60% smaller than the total GPA mappings, while CIA produced
one that is 65% smaller. We note that CPA strategy led to a greater number
of mappings than the original global anchoring, whereas the CIA strategy led

6 individual statistics available in the supplementary materials
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to a number of mappings just under the global anchoring. While this might
suggest that the CIA strategy is losing relevant mappings, it is in fact a natural
consequence of the incremental strategy, due to the fact that AML is configured
to produce (mostly) 1 to 1 alignments. Thus, if in the pairwise strategy we
have 3 mappings between equivalent classes c1A, c1B and c1C of ontologies A,
B and C, in the incremental strategy we would have only 2 mappings, since
once ontologies A and B are combined into AB in a first iteration, AML will
generally produce only 1 mapping between each class of AB and C, so c1C would
be mapped to either c1A or c1B, but not both. We note, however, that the third
mapping would be semantically redundant, as it is implied by other two. Thus,
the CIA strategy is expected to capture less mappings than the CPA strategy,
but most of the missing mappings will be semantically redundant. A comparison
of the alignments produced by CPA and CIA revealed that all CIA mappings
are contained in the CPA alignment, with CIA covering 88% of the mappings
found by CPA.

Table 4: Merged alignments results

Strategy Total Mappings

GPA 554547

CPA+anchoring 442649

CIA+anchoring 417131

GPA: global pairwise alignment. CPA: within-cluster pairwise alignment.
CIA: within cluster incremental alignment.

4.4 Discussion

The holistic alignment of real world ontologies is a challenge that state of the
art ontology matching systems that compete in the OAEI have yet to address.
The very good performance of systems such as AML[17] and LogMap[14] in
the biomedical tracks at OAEI[12] is impressive, but pales in comparison to the
challenges of matching ontologies that have not stood the scrutiny applied to
benchmark ontologies in organized challenges. In the course of this work, we
encountered several hurdles due to syntactical issues in the ontologies or unex-
pected uses of some properties that had to be solved to ensure adequate coverage.
As an example we highlight the case of the Experimental Factor Ontology (EFO)
ontology that establishes cross-references between a single class and 77 classes in
the Human Disease Ontology (DOID). A cross-reference is usually interpreted
as an equivalent or closely related class, and this is explored by AML to produce
equivalence mappings, but in this case the underlying relation between the one
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class and the 77 is one of subsumption. Addressing such cases correctly, will
require adapting AML.

A recognized challenge in holistic matching is that the order of the matching
tasks can impact the quality of the final alignment [13]. To circumvent this issue,
[18]) developed a method that performs simultaneous matching of ontologies
but unfortunately results in substantial losses in performance when compared to
pairwise methods. The cost of determining the order for incremental matching
is not considered by other works (e.g. [13]), however we argue that it must be
considered a part of the alignment process. Moreover, employing simply lexical
similarity is less than ideal in the biomedical domain where there is a high level of
synonymy that is not always captured by the lexical component of the ontologies.
In this work, we employ the same method to determine cluster affiliation and
matching order, which is based on the semantic overlap between ontologies as
measured by very high lexical similarity but also based on cross-references and
logical definitions, which are particular to the biomedical domain. While in other
works, clustering or tree mining is employed to determine the order of matching,
we chose to apply clustering to actually partition the search space. This not
only allowed a reduction of the matching tasks, but since clusters are based
on semantic overlap and group together ontologies of the same domain, it can
also mitigate the problem of false positives caused by homonyms. Let’s take
the example of the class Gingiva in the Foundational Model of Anatomy (FMA)
ontology and the class Gum in the National Cancer Institute Thesaurus (NCIT).
While ‘gum’ and ‘gingiva’ are synonymous words, in this case Gum actually refers
to a type of chemical. However, since NCIT and FMA were actually placed in
different clusters, the impact of these type of mappings can be minimized.

Although it is not possible to directly measure the quality of the resulting
alignments short of a manual evaluation (as no reference alignments exist for
these ontologies), an analysis of the number of mappings obtained can shed light
on some interesting aspects. The GPA represents an upper bound on the num-
ber of mappings. It finds 120 thousand more mappings that anchoring, which
we hypothesize to have a lower precision but increased recall, since the extra
method employed by the full AML pipeline compared to anchoring are mostly
methods that were designed to increase recall, assuming that the performance of
AML in these ontologies is comparable to its performance in the OAEI biomed-
ical benchmarks. One advantage of the clustering-based approaches is that they
have the potential to increase the precision of mappings between clusters, by
only establishing mappings based on the high precision and lower recall an-
choring strategy, while increasing recall within the clusters, by employing more
sophisticated alignment methods. Moreover, as detailed in Section 4.3, the CIA
strategy is expected to find less mappings than the CPA strategy, but these will
be mostly semantically redundant mappings.
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5 Conclusions

The rich panorama of both publicly available data and ontologies in the biomed-
ical domain represents an opportunity for developing explainable knowledge-
enabled systems. In multi-domain areas, such as personalized medicine, this re-
quires the integration of multiple data sources and ontologies. Holistic ontology
matching and integration holds the promise to scale semantic data integration
to multiple sources [28], however holistic ontology matching in the biomedical
domain is still an open challenge.

We have developed a novel approach for holistic ontology matching that
builds on an existing system, AML[9], addressing the requirements and chal-
lenges of the biomedical domain. We demonstrated that the straightforward
application of the pairwise alignment approach to all ontology pairs takes up to
100% more time than the novel clustering-based approaches. We further demon-
strated that the within-cluster incremental alignment approach is five times
faster than the within-cluster pairwise alignment approach. All approaches were
able to generate a fully integrated KG, meaning that all ontologies have mappings
to one or more of the other ontologies, effectively responding to the coverage
requirement. The quality assessment of the resulting alignment is not straight-
forward, since there are no holistic reference alignments within the biomedical
domains, and out of the 378 pairwise alignments, only one pair is covered by
an existing reference (FMA-NCI) but it employs an outdated version of the
ontologies and was produced semi-automatically.

The proposed approach can be extended with further refinements. To increase
the coverage and semantic richness of the KG, complex mappings can be applied
to more accurately capture the relations between their entities. While the KG
construction will be mostly automated, expert feedback will be paramount to
ensure an accurate KG that can support explanations. To make the most effi-
cient use of feedback, we will develop algorithms to identify potentially doubtful
mappings that require user validation, and algorithms that propagate the user
feedback automatically [6].

The experience of applying a state of the art ontology matching system to a
large set of real world biomedical ontologies for holistic matching and integration
resulted in lessons learnt for future endeavours. One of the identified challenges
was the comparative evaluation of the alignment quality produced by pairwise
and holistic approaches. One future opportunity is to build upon the set of
reference alignments made available by the OAEI to create a holistic reference
alignment following the approach described by Roussille et al.[29]. Another
lesson was the fact that the ontology loading times slow down the alignment
process substantially, also this was partly due to the fact that AML still employs
an older version (3.4) of the OWL API. Preliminary testing showed that a new
version of the OWL API (5.1) speeds up the loading by a factor of 2. Perhaps the
biggest challenge was in handling the varying degrees of quality of the ontologies,
with formatting issues and non-standard uses of the cross-reference property that
required ad hoc solutions to circumvent, and will require further extensions to
AML to handle more adequately.
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Building on decades of work by the semantic web and biomedical ontologies
communities, we have developed an approach for holistic matching and inte-
gration of ontologies from multiple domains to build KG to support AI-based
personalized cancer therapy. The size, diversity and complexity of the under-
lying ontologies and overarching domain represented significant challenges that
required evolving the current state of the art in ontology matching.
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